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Preface

This is “my” part of a future book “Scientific Computing with Radial Basis
Functions” I am currently writig with my colleagues C.S. Chen and Y.C.
Hon. I took a preliminary version out of the current workbench for the book
and made only very few changes. Readers should be aware that this text
just sets the stage for certain kinds of “meshless methods” for solving partial
differential equations. Thus there are quite a few “hanging” references to
future chapters for which I apologize.

R. Schaback Spring 2007

1 Radial Basis Functions

Scientific Computing with Radial Basis Functions focuses on the reconstruc-
tion of unknown functions from known data. The functions are multivariate
in general, and they may be solutions of partial differential equations satisfy-
ing certain additional conditions. However, the reconstruction of multivariate
functions from data can only be done if the space furnishing the “trial” func-
tions is not fixed in advance, but is data–dependent [99]. Finite elements

(see e.g.: [18, 19]) provide such data–dependent spaces. They are defined
as piecewise polynomial functions on regular triangularizations.

To avoid triangularizations, re-meshing and other geometric programming
efforts, meshless methods have been suggested [16]. This book focuses on
a special class of meshless techniques for generating data–dependent spaces
of multivariate functions. The spaces are spanned by shifted and scaled
instances of radial basis functions (RBF) like the multiquadric [66]

x 7→ Φ(x) :=
√

1 + ‖x‖2
2, x ∈ IRd

or the Gaussian

x 7→ Φ(x) := exp(−‖x‖2
2), x ∈ IRd.

These functions are multivariate, but reduce to a scalar function of the Eu-
clidean norm ‖x‖2 of their vector argument x, i.e.: they are radial in the
sense

Φ(x) = φ(‖x‖2) = φ(r), x ∈ IRd (1.1)
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for the “radius” r = ‖x‖2 with a scalar function φ : IR → IR. This makes
their use for high–dimensional reconstruction problems very efficient, and it
induces invariance under orthogonal transformations.

Reconstruction of functions is then made by trial functions u which are
linear combinations

u(x) :=
n∑

k=1

αkφ(‖x − yk‖2) (1.2)

of translates φ(‖x− yk‖2) of a single radial basis function. The translations
are specified by vectors y1, . . . ,yn of IRd, sometimes called centers, without
any special assumptions on their number or geometric position. This is why
the methods of this book are truly “meshless”. In certain cases one has to
add multivariate polynomials in x to the linear combinations in (1.2), but
we postpone these details.

Our main goal is to show how useful radial basis functions are in ap-
plications, in particular for solving partial differential equations (PDE) of
science and engineering. Therefore, we keep the theoretical background to a
minimum, referring to recent books [24, 135] on radial basis functions when-
ever possible. Furthermore, we have to ignore generalizations of radial basis
functions to kernels. These arise in many places, including probability and
learning theory, and they are surveyed in [124]. The rest of this chapter gives
an overview over the applications we cover in this book.

1.1 Multivariate Interpolation and Positive Definite-

ness

The simplest case of reconstruction of a d–variate unknown function u∗

from data occurs when only a finite number of data in the form of val-
ues u∗(x1), . . . , u

∗(xm) at arbitrary locations x1, . . . ,xm in IRd forming a set
X := {x1, . . . ,xm} are known. In contrast to the n trial points y1, . . . ,yn

of (1.2), the m data locations x1, . . . ,xm are called test points or colloca-

tion points in later applications. To calculate a trial function u of the form
(1.2) which reproduces the data u∗(x1), . . . , u

∗(xm) well, we have to solve the
m × n linear system

n∑

k=1

αkφ(‖xi − yk‖2) ≈ u∗(xi), 1 ≤ i ≤ m (1.3)
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for the n coefficients α1, . . . , αn. Matrices with entries φ(‖xi − yk‖2) will
occur at many places in the book, and they are called kernel matrices in
machine learning.

Of course, users will usually make sure that m ≥ n holds by picking at
least as many test points as trial points, but the easiest case will occur when
the centers yk of trial functions (1.2) are chosen to be identical to the data
locations xj for 1 ≤ j ≤ m = n. If there is no noise in the data, it then
makes sense to reconstruct u∗ by a function u of the form (1.2) by enforcing
the exact interpolation conditions

u∗(xj) =
n∑

k=1

αjφ(‖xj − xk‖2), 1 ≤ j ≤ m = n. (1.4)

This is a system of m linear equations in n = m unknowns α1, . . . , αn with a
symmetric coefficient matrix

AX := (φ(‖xj − xk‖2))1≤j,k≤m (1.5)

In general, solvability of such a system is a serious problem, but one of the
central features of kernels and radial basis functions is to make this problem
obsolete via

Definition 1.6 A radial basis function φ on [0,∞) is positive definite

on IRd, if for all choices of sets X := {x1, . . . ,xm} of finitely many points
x1, . . . ,xm ∈ IRd and arbitrary m the symmetric m× m symmetric matrices
AX of (1.5) are positive definite.

Consequently, solvability of the system (1.4) is guaranteed, if φ satisfies the
above definition. This holds for several standard radial basis function pro-
vided in Table 1, but users must be aware to run into problems when using
other scalar functions such as exp(−r). A more complete list of radial basis
functions will follow later on page 16.

But there are some very useful radial basis functions which fail to be
positive definite. In such cases, one has to add polynomials of a certain
maximal degree to the trial functions of (1.2). Let P d

Q−1 denote the space
spanned by all d-variate polynomials of degree up to Q− 1, and pick a basis
p1, . . . , pq of this space. The dimension then q comes out to be q =

(
Q−1+d

d

)

,

and the trial functions of (1.2) are augmented to

u(x) :=
n∑

k=1

αkφ(‖x − yk‖2) +
q
∑

`=1

β`p`(x). (1.7)
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Name φ(r)
Gaussian exp(−r2)

Inverse multiquadrics (1 + r2)β/2, β < 0

Matern/Sobolev Kν(r)r
ν, ν > 0

Table 1: Positive definite radial basis functions

Now there are q additional degrees of freedom, but these are removed by q
additional homogeneous equations

n∑

k=1

αkp`(xk) = 0, 1 ≤ ` ≤ q (1.8)

restricting the coefficients α1, . . . , αn in (1.7). Unique solvability of the ex-
tended system

n∑

k=1

αkφ(‖xj − yk‖2) +
q
∑

`=1

β`p`(xj) = u(xj), 1 ≤ j ≤ n

n∑

k=1

αkp`(xk) = 0, 1 ≤ ` ≤ q
(1.9)

is assured if

p(xk) = 0 for all 1 ≤ k ≤ n and p ∈ P d
Q−1 implies p = 0. (1.10)

This is the proper setting for conditionally positive definite radial basis
functions of order Q, and in case Q = 0 it will coincide with what we had
before, since then q = 0 holds, (1.8) is obsolete, and (1.7) reduces to (1.2). We
leave details of this to the next chapter, but we want the reader to be aware
of the necessity of adding polynomials in certain cases. Table 2 provides
a selection of the most useful conditionally positive definite functions, and
again we refer to page 16 for other radial basis functions.

1.2 Stability and Scaling

The system (1.4) is easy to program, and it is always solvable if φ is a posi-
tive definite radial basis function. But it also can cause practical problems,
since it may be badly conditioned and is non–sparse in case of globally non-
vanishing radial basis functions. To handle bad condition of moderately large
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Name φ(r) Q condition

multiquadric (−1)dβ/2e(1 + r2)β/2 dβ/2e β > 0, β /∈ 2IN

polyharmonic (−1)dβ/2erβ dβ/2e β > 0, β /∈ 2IN

polyharmonic (−1)1+β/2rβ log r 1 + β/2 β > 0, β ∈ 2IN

thin-plate spline r2 log r 2

Table 2: Conditionally positive definite radial basis functions

systems, one can rescale the radial basis function used, or one can calculate
an approximate solution by solving a properly chosen subsystem. Certain
decomposition and preconditioning techniques are also possible, but details
will be postponed to the next chapter.

In absence of noise, systems of the form (1.4) or (1.9) will in most cases
have a very good approximate solution, because the unknown function u
providing the right-hand side data can usually be well approximated by the
trial functions used in (1.2) or (1.7). This means that even for high condition
numbers there is a good reproduction of the right-hand side by a linear
combination of the columns of the matrix. The coefficients are in many cases
not very interesting, since users want to have a good trial function recovering
the data well, whatever the coefficients are. Thus users can apply specific
numerical techniques like singular value decomposition or optimization

algorithms to get useful results in spite of bad condition. We shall supply
details in the next chapter, but we advise users not to use primitive solution
methods for their linear systems.

For extremely large systems, different techniques are necessary. Even if
a solution can be calculated, the evaluation of u(x) in (1.2) at a single point
x has O(n) complexity, which is not tolerable in general. This is why some
localization is necessary, cutting the evaluation complexity at x down to
O(1). At the same time, such a localization will make the system matrix
sparse, and efficient solution techniques like preconditioned conjugate gradi-
ents become available. Finite elements achieve this by using a localized basis,
and the same trick also works for radial basis functions, if scaled functions
with compact support are used. Fortunately, positive definite radial func-
tions with compact support exist for all space dimensions and smoothness
requirements [142, 132, 23]. The most useful example is Wendland’s function

φ(r) =

{

(1 − r)4(1 + 4r), 0 ≤ r ≤ 1,
0, r ≥ 1,
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which is positive definite in IRd for d ≤ 3 and twice differentiable in x when
r = ‖x‖2 (see Table 1 and other cases in 3 on page 16). Other localization
techniques use fast multipole methods [11, 12] or a partition of unity

[134]. This technique originated from finite elements [102, 6], where it
served to patch local finite element systems together. It superimposes local
systems in general, using smooth weight functions, and thus it also works
well if the local systems are made up using radial basis functions.

However, all localization techniques require some additional geometric
information, e.g.: a list of centers yk which are close to any given point x.
Thus the elimination of triangulations will, in case of huge systems, bring
problems of Computational Geometry through the back door.

A particularly local interpolation technique, which does not solve any
system of equations but can be efficiently used for any local function recon-
struction process, is the method of moving least squares [88, 92, 133]. We
have to ignore it here. Chapter 2 will deal with radial basis function methods
for interpolation and approximation in quite some detail, including methods
for solving large systems in section 2.8.

1.3 Solving Partial Differential Equations

With some modifications, the above observations will carry over to solving
partial differential equations. In this introduction, we confine ourselves to a
Poisson problem on a bounded domain Ω ⊂ IR3 with a reasonably smooth
boundary ∂Ω. It serves as a model case for more general partial differential
equations of science and engineering that we have in mind. If functions fΩ

on the domain Ω and fΓ on the boundary Γ := ∂Ω are given, a function u
on Ω ∪ Γ with

−∆u = fΩ in Ω

u = fΓ in Γ
(1.11)

is to be constructed, where ∆ is the Laplace operator

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

in Cartesian coordinates x = (x1, x2, x3)
T ∈ IR3. This way the problem is

completely posed in terms of evaluations of functions and derivatives, with-
out any integrations. However, it requires to take second derivatives of u,
and a careful mathematical analysis shows that there are cases where this
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assumption is questionable. It holds only under certain additional assump-
tions, and this is why the above formulation is called a strong form. Except
for the next section, we shall exclusively deal with methods for solving partial
differential equations in strong form.

A weak form is obtained by multiplication of the differential equation
by a smooth test function v with compact support within the domain Ω.
Using Green’s formula (a generalization of integration by parts), this converts
to

−
∫

Ω
v · (∆u∗)dx =

∫

Ω
v · fΩdx

︸ ︷︷ ︸

=:(v,fΩ)L2(Ω)

=
∫

Ω
(∇v) · (∇u∗)dx

︸ ︷︷ ︸

=:a(v,u∗)

or, in shorthand notation, to an infinite number of equations

a(v, u∗) = (v, fΩ)L2(Ω) for all test functions v

between two bilinear forms, involving two local integrations. This technique
gets rid of the second derivative, at the cost of local integration, but with
certain theoretical advantages we do not want to explain here.

1.4 Comparison of Strong and Weak Problems

Concerning the range of partial differential equation techniques we handle
here in this book, we restrict ourselves to cases we can solve without inte-
grations, using radial basis functions as trial functions. This implies that we
ignore boundary integral equation methods and finite elements as numerical
techniques. For these, there are enough books on the market.

On the analytical side, we shall only consider problems in strong form,
i.e.: where all functions and their required derivatives can be evaluated point-
wise. Some readers might argue that this rules out too many important
problems. Therefore we want to provide some arguments in favor of our
choice. Readers without a solid mathematical background should skip over
these remarks.

First, we do not consider the additional regularity needed for a strong
solution to be a serious drawback in practice. Useful error bounds and rapidly
convergent methods will always need regularity assumptions on the problem
and its solutions. Thus our techniques should be compared to spectral meth-
ods or the p–technique in finite elements. If a solution of a weak Poisson
problem definitely is not a solution of a strong problem, the standard finite
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element methods will not converge with reasonable orders anyway, and we
do not want to compete in such a situation.

Second, the problems to be expected from taking a strong form instead
of a weak form can in many cases be eliminated. To this end, we look at
those problems somewhat more closely.

The first case comes from domains with incoming corners. Even if
the data functions fΩ and fΓ are smooth, there may be a singularity of
u∗ at the boundary. However, this singularity is a known function of the
incoming corner angle, and by adding an appropriate function to the set of
trial functions, the problem can be overcome.

The next problem source is induced by non-smooth data functions.
Since these are fixed, the exceptional points are known in principle, and
precautions can be taken by using nonsmooth trial functions with singulari-
ties located properly. For time–dependent problems with moving boundaries
or discontinuities, meshless methods can adapt very flexibly, but this is a
research area which is beyond the scope of this book.

The case of data functions which do not allow point evaluations (i.e.:
fΩ ∈ L2(Ω) or even distributional data for the Poisson problem) and still
require integration can be ruled out too, because on one hand we do not
know a single case from applications, and on the other hand we would like
to know how to handle this case with a standard finite element code, which
usually integrates by applying integration formulae. The latter can never
work for L2 functions.

Things are fundamentally different when applications in science or engi-
neering insist on distributional data. Then weak forms are unavoidable,
and we address this situation now.

Many of the techniques here can be transferred to weak forms, if ab-
solutely necessary. This is explained to some extent in [74] for a class of
symmetric meshless methods. The meshless local Petrov–Galerkin (MLPG)
method [3, 4, 5] of S.N. Atluri and collaborators is a good working example
of a weak meshless technique with plenty of successful applications in engi-
neering, Because it is both weak and unsymmetric, it only recently was put
on a solid theoretical foundation [121]

Finally, the papers [74, 121] also indicate that mixed weak and strong
problems are possible, confining the weak approach to areas where problems
occur or data are distributional. Together with adaptivity, this technique
will surely prove useful in the future.

9



1.5 Collocation Techniques

This approach applies to problems in strong form and does not require nu-
merical integration. Consequently, it avoids all kinds of meshes. In order to
cope with scattered multivariate data, it uses methods based on radial basis
function approximation, generalizing the interpolation problem described in
Section 1.1. Numerical computations indicate that these meshless methods
are ideal for solving complex physical problems in strong form on irregular
domains. Section ?? will select some typical examples out of a rich literature,
but here we want to sketch the basic principles.

Consider the following linear Dirichlet boundary value problem:

Lu = fΩ in Ω ⊂ IRd

u = fΓ on Γ := ∂Ω
(1.12)

where L is a linear differential or integral operator. Collocation is a tech-
nique that interprets the above equations in a strong pointwise sense and
discretizes them by imposing finitely many conditions

Lu(xΩ
j ) = fΩ(xΩ

j ), xΩ
j ∈ Ω, 1 ≤ j ≤ mΩ

u(xΓ
j ) = fΓ(xΓ

j ), xΓ
j ∈ Γ 1 ≤ j ≤ mΓ

(1.13)

on m := mΩ +mΓ test points in Ω and Γ. Note that this is a generalization
of a standard multivariate interpolation problem as sketched in Section 1.1
and to be described in full generality in the following chapter. The exact
solution u∗ of the Dirichlet problem (1.12) will satisfy (1.13), but there are
plenty of other functions u which will also satisfy these equations. Thus one
has to fix a finite-dimensional space U of trial functions to pick solutions
u of (1.13) from, and it is reasonable to let U be at least m-dimensional.
But then the fundamental problem of all collocation methods is to guarantee
solvability of the linear system (1.13) when restricted to trial functions from
U . This problem is hard to solve, and therefore collocation methods did not
attract much attention so far from the mathematical community.

However, as we know from Chapter ??, kernel-based trial spaces allow
nonsingular matrices for multivariate interpolation problems, and so there
is some hope that kernel-based trial spaces also serve well for collocation.
Unfortunately, things are not as easy as for interpolation, but they proved
to work well in plenty of applications.

The first attempt to use radial basis functions to solve partial differential
equations is due to Ed Kansa [82]. The idea is to take trial functions of the
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form (1.2) or (1.7), depending on the order of the positive definiteness of the
radial basis function used. For positive q one also has to postulate (1.8), and
thus one should take n := m + q to arrive at a problem with the correct
degrees of freedom. The collocation equations come out in general as

n∑

k=1

αk∆φ(‖xΩ
j − yk‖2) +

q
∑

`=1

β`∆p`(x
Ω
j ) = fΩ(xΩ

j ), 1 ≤ j ≤ mΩ

n∑

k=1

αkφ(‖xΓ
j − yk‖2) +

q
∑

`=1

β`p`(x
Γ
j ) = fΓ(xΓ

j ), 1 ≤ j ≤ mΓ

n∑

k=1

αkp`(yk) + 0 = 0, 1 ≤ ` ≤ q,

(1.14)
forming a linear unsymmetric n×n = (mΩ +mΓ +q)× (mΩ +mΓ +q) system
of equations. In all known applications, the system is nonsingular, but there
are specially constructed cases [73] where the problem is singular.

A variety of experimental studies, e.g.: by Kansa [83, 84], Golberg and
Chen [57], demonstrated this technique to be very useful for solving partial
differential and integral equations in strong form. Hon et al. further extended
the applications to the numerical solutions of various ordinary and partial
differential equations including general initial value problems [70], the nonlin-
ear Burgers equation with a shock wave [71], the shallow water equation
for tide and current simulation in domains with irregular boundaries [67],
and free boundary problems like the American option pricing [72, 68]. These
cases will be reported in Chapter ??. Due to the unsymmetry, the theoretical
possibility of degeneration, and the lack of a seminorm-minimization in the
analytic background, a theoretical justification is difficult, but was provided
recently [118] for certain variations of the basic approach.

The lack of symmetry may be viewed as a bug, but it also can be seen
as a feature. In particular, the method does not assume ellipticity or self-
adjointness of differential operators. Thus it applies to a very general class
of problems, as many applications show.

On the other hand, symmetry can be brought back again by a suitable
change of the trial space. In the original method, there is no connection
between the test points xΩ

j , xΓ
j and the trial points yk. If the trial points

are dropped completely, one can recycle the test points to define new trial
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functions by

u(x) :=
mΩ∑

i=1

αΩ
i ∆φ(‖x − xΩ

i ‖2) +
mΓ∑

j=1

αΓ
j φ(‖x − xΓ

j ‖2) +
q
∑

`=1

β`p`(x) (1.15)

providing the correct number n := mΩ + mΓ + q of degrees of freedom. Note
how the test points xΩ

i and xΓ
j lead to different kinds of trial functions, since

they apply “their” differential or boundary operator to one of the arguments
of the radial basis function.

The collocation equations now come out as a symmetric square linear
system with block structure. If we define vectors

fΩ := (fΩ(xΩ
1 ), . . . , fΩ(xΩ

mΩ
))T ∈ IRmΩ

fΓ := (fΓ(xΓ
1 ), . . . , fΓ(xΓ

mΓ
))T ∈ IRmΓ

0q := (0, . . . , 0)T ∈ IRq

aΩ := (αΩ
1 , . . . , αΩ

mΩ
)T ∈ IRmΩ

aΓ := (αΓ
1 , . . . , αΓ

mΓ
)T ∈ IRmΓ

bq := (β1, . . . , βq)
T ∈ IRq

we can write the system with a slight abuse of notation as





∆2φ(‖xΩ
r − xΩ

i ‖2) ∆φ(‖xΩ
r − xΓ

j ‖2) ∆p`(x
Ω
r )

∆φ(‖xΓ
s − xΩ

i ‖2) φ(‖xΓ
s − xΓ

j ‖2) p`(x
Γ
s )

∆pt(x
Ω
i ) pt(x

Γ
j ) 0











aΩ

aΓ

bq




 =






fΩ

fΓ

0q






where indices in the submatrices run over

1 ≤ i, r ≤ mΩ

1 ≤ j, s ≤ mΓ

1 ≤ `, t ≤ q.

The first set of equations arises when applying ∆ to (1.15) on the domain
test points xΩ

r . The second is the evaluation of (1.15) on the boundary test
points xΓ

s . The third is a natural generalization of (1.8) to the current trial
space. Note that the system has the general symmetric form






AΩ,Ω AΩ,Γ PΩ

AΩ,ΓT
AΓ,Γ PΓ

PΩT
PΓT

0q×q











aΩ

aΓ

bq




 =






fΩ

fΓ

0q




 (1.16)

with evident notation when compared to the previous display.
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Under weak assumptions, such matrices are nonsingular [141, 79] because
they arise as Hermite interpolation systems generalizing (1.4). The approach
is called symmetric collocation and has a solid mathematical foundation
[52, 51] making use of the symmetry of the discretized problem. We provide
specific applications in Chapter ?? and some underlying theory in section
2.2.

1.6 Method of Fundamental Solutions

This method is a highly effective technique for solving homogeneous differ-
ential equations, e.g.: the potential problem (1.11) with fΩ = 0. The basic
idea is to use trial functions that satisfy the differential equation, and to
superimpose the trial functions in such a way that the additional boundary
conditions are satisfied with sufficient accuracy. It reduces a homogeneous
partial differential equation problem to an approximation or interpolation
problem on the boundary by fitting the data on the boundary. Since fun-
damental solutions are special homogeneous solutions which are well-known
and easy to implement for many practically important differential operators,
the method of fundamental solutions is a relatively easy way to find the de-
sired solution of a given homogeneous differential equation with the correct
boundary values.

For example, the function uy(x) := ‖x − y‖−1
2 satisfies (∆uy)(x) = 0 ev-

erywhere in IR3 except for x = y, where it is singular. But if points y1, . . . ,yn

are placed outside the domain Ω, any linear combination u of the uy1, . . . , uyn

will satisfy ∆u = 0 on all of Ω. Now the freedom in the coefficients can be
used to make u a good approximation to fΓ on the boundary. For this, sev-
eral methods are possible, but we do not want to provide details here. It
suffices to see that we have got rid of the differential equation, arriving at a
plain approximation problem on the boundary of Ω.

The method of fundamental solutions was first proposed by Kupradze and
Aleksidze [87] in 1964. During the past decade, the method has re-emerged
as a popular boundary-type meshless method and has been applied to solve
various science and engineering problems. One of the reasons for the renewed
interest for this method is that it has been successfully extended to solve
inhomogeneous and time- dependent problems. As a result, the method now
is applicable to a larger class of partial differential equations. Furthermore,
it does not require numerical integration and is “truly meshless” in the sense
that no tedious domain or boundary mesh is necessary. Hence, the method
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is extremely simple to implement, which is especially attractive to scientists
and engineers working in applications.

In many cases, e.g.: for the potential equation, the underlying mathe-
matical analysis has a maximum principle [111] for homogeneous solutions,
and then the total error is bounded by the error on the boundary, which can
be evaluated easily. Furthermore, adaptive versions are possible, introducing
more trial functions to handle places where the boundary error is not tolera-
ble. In very restricted cases, convergence of these methods can be proven to
be spectral (i.e.: faster than any fixed order), and for “smooth” application
problems this technique shows an extremely good convergence behavior in
practice.

This book is the first to give a comprehensive treatment of the method
of fundamental solutions (MFS). The connection to radial basis function
techniques is that fundamental solutions of radially invariant differential op-
erators like the Laplace or the Helmholtz operator have radial form around
a singularity, like in the above case. For example, one of the most widely
used radial basis functions, the thin-plate spline φ(r) := r2 log r is the
fundamental solution at the origin to the thin plate equation ∆2u = 0 in IR2.

Methods which solve homogeneous equations by superposition of general
solutions and an approximation on the boundary have quite some history,
dating back to Trefftz [130]. In particular, the work of L. Collatz [101]
contains plenty of examples done in the 1960’s. Recently, this subject was
taken up again and called boundary knot method [32, 30, 31, 69], but we
stick to the Method of Fundamental Solutions here.

1.7 Method of Particular Solutions

Inhomogeneous differential equations with linear differential operators L can
be reduced to homogeneous cases, if trial functions uj are used for which
Luj =: fj is known. If Lu = fΩ is to be solved, a good approximation f
to fΩ by a linear combination of the fj will have the form f = Lu with u
being a linear combination of the uj, using the same coefficients. This is
the method of particular solutions (MPS). It reduces the solution of
an inhomogeneous differential equation to an approximation problem for the
inhomogeneity.

After this first stage, Lu = f is close to fΩ, and the original problem
Lu = fΩ can be replaced by a homogeneous problem due to L(u∗ − u) ≈
fΩ − f ≈ 0, and then the method of fundamental solutions (MFS) can be
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applied. The approximation of fΩ by f can be done by interpolation or
approximation techniques of the previous sections, provided that the fj are
translates of radial basis functions.

Inhom. PDE
MPS
⇒

{

App. in interior

Homog. PDE
MFS
⇒ App. on boundary

This is how the major techniques of this book are related. For the most
important differential operators and radial basis functions, we provide useful
(uj, fj) pairs with Luj = fj and show their applications.

1.8 Time–dependent Problems

In the final chapter, we extend the method of fundamental solutions and
the method of particular solutions to solving time-dependent problems. A
common feature of the methods in this chapter is that a given time-dependent
problem is reduced to an inhomogeneous modified Helmholtz equation through
the use of two basic techniques:

• Laplace transforms and

• time-stepping algorithms.

Using the Laplace transform, the given time-dependent problem can be solved
in one step in Laplace space and then converted back to the original time
space using the inverse Laplace transform. By time-stepping, the given time-
dependent problem is transformed into a sequence of modified Helmholtz
equations which in turn can be solved by the numerical procedures described
in the previous chapters. In the parabolic case, we consider both linear and
nonlinear heat equations. In the hyperbolic case, we only consider the wave
equation using the time-stepping algorithm. Readers are encouraged to apply
this approach to solve more challenging time-dependent problems.

1.9 Lists of Radial Basis Functions

Table 3 shows a selection of the most popular radial basis functions φ(r)
with non-compact support. We provide the minimal order Q of conditional
positive definiteness and indicate the range of additional parameters.

Classes of compactly supported radial basis functions were provided
by Wu [142], Wendland [132], and Buhmann [23]. We list a selection of
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Name φ(r) Q condition
Gaussian exp(−r2) 0

Matern rνKν(r) 0 ν > 0

inverse multiquadric (1 + r2)β/2 0 β < 0

multiquadric (−1)dβ/2e(1 + r2)β/2 dβ/2e β > 0, β /∈ 2IN

polyharmonic (−1)dβ/2erβ dβ/2e β > 0, β /∈ 2IN

polyharmonic (−1)1+β/2rβ log r 1 + β/2 β > 0, β ∈ 2IN

Table 3: Global RBFs

Wendland’s functions in Table 4. These are always positive definite up to a
maximal space dimension dmax, and have smoothness Ck as indicated in the
table. Their polynomial degree is minimal for given smoothness, and they
have a close connection to certain Sobolev spaces.

φ(r) k dmax

(1 − r)2
+ 0 3

(1 − r)4
+(4r + 1) 2 3

(1 − r)6
+(35r2 + 18r + 3) 4 3

(1 − r)8
+(32r3 + 25r2 + 8r + 1) 6 3

(1 − r)3
+ 0 5

(1 − r)5
+(5r + 1) 2 5

(1 − r)7
+(16r2 + 7r + 1) 4 5

Table 4: Selection of Wendland’s compactly supported radial basis functions

2 Basic Techniques for Function Recovery

This chapter treats a basic problem of Scientific Computing: the recovery of
multivariate functions from discrete data. We shall use radial basis func-

tions for this purpose, and we shall confine ourselves to reconstruction from
strong data consisting of evaluations of the function itself or its derivatives
at discrete points. Recovery of functions from weak data, i.e.: from data
given as integrals against test functions, is a challenging research problem
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Figure 1: Some radial basis functions

[120, 121], but it has to be ignored here. Note that weak data require inte-
gration, and we want to avoid unnecessary background meshes used for this
purpose.

2.1 Interpolation of Lagrange Data

Going back to section 1.1, we assume data values y1, . . . , ym ∈ IR to be given,
which are supposed to be values yk = u∗(xk) of some unknown function u∗

at scattered points x1, . . . ,xm in some domain Ω in IRd. We then pick a
positive definite radial basis function φ and set up the linear system (1.4)
of m equations for the m coefficients α1, . . . , αm of the representation (1.2)
where n = m and yk = xk for all k. In case of conditionally positive radial
basis functions, we have to use (1.7) and add the conditions (1.8).

In Figure 2 we have 150 scattered data points in [−3, 3]2 in which we
interpolate the MATLAB peaks function (top right). The next row shows
the interpolant using Gaussians, and the absolute error. The lower row shows
MATLAB’s standard technique for interpolation of scattered data using the
griddata command. The results are typical for such problems: radial basis
function interpolants recover smooth functions very well from a sample of
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scattered values, provided that the values are noiseless and the underlying
function is smooth.

Figure 2: Interpolation by radial basis functions

The ability of radial basis functions to deal with arbitrary point locations
in arbitrary dimensions is very useful when geometrical objects have to be
constructed, parametrized, or warped, see e.g.: [2, 26, 108, 25, 109, 112, 140,
17]. In particular, one can use such transformations to couple incompatible
finite element codes [1].

Furthermore, interpolation of functions has quite some impact on meth-
ods solving partial differential equations. In Chapter ?? we shall solve in-
homogeneous partial differential equations by interpolating the right-hand
sides by radial basis functions which are related to particular solutions of the
partial differential equation in question.

Another important issue is the possibility to parametrize spaces of trans-
lates of kernels not via coefficients, but via function values at the translation
centers. This simplifies meshless methods “constructing the approximation
entirely in terms of nodes” [16]. Since kernel interpolants approximate higher
derivatives well, local function values can be used to provide good estimates
for derivative data [131]. This has connections to pseudospectral methods
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[44].

2.2 Interpolation of Mixed Data

It is quite easy to allow much more general data for interpolation by radial
basis functions. For example, consider recovery of a multivariate function
f from data including the values ∂f

∂x2
(z),

∫

Ω f(t)dt. The basic trick, due to
Z.M. Wu [141], is to use special trial functions

∂φ(‖x − z‖2)

∂x2

for
∂f

∂x2

(z)
∫

Ω
φ(‖x − t‖2)dt for

∫

Ω
f(t)dt

to cope with these requirements. In general, if a linear functional λ de-
fines a data value λ(f) for a function f as in the above cases with λ1(f) =
∂f
∂x2

(z), λ2(f) =
∫

Ω f(t)dt, the special trial function uλ(x) to be added is

uλ(x) := λtφ(‖x − t‖2) for λt(f(t))

where the upper index denotes the variable the functional acts on. If m = n
functionals λ1, . . . , λm are given, the span (1.2) of trial functions is to be
replaced by

u(x) =
n∑

k=1

αkλ
t
kφ(‖x − t‖2).

The interpolation system (1.4) turns into

λju =
n∑

k=1

αkλ
t
kλ

x
j φ(‖x − t‖2), 1 ≤ j ≤ n (2.1)

with a symmetric matrix composed of λt
kλ

x
j φ(‖x−t‖2), 1 ≤ j, k ≤ n which is

positive definite if the functionals are linearly independent and φ is positive
definite.

To give an example with general functionals, Figure 3 shows an interpola-
tion to Neumann data +1 and -1 on each half of the unit circle, respectively,
in altogether 64 points by linear combinations of properly scaled Gaussians.

In case of conditionally positive definite radial basis functions, the span
of (1.7) turns into

u(x) :=
n∑

k=1

αkλ
t
kφ(‖x− t‖2) +

q
∑

`=1

β`p`(x)
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Figure 3: Generalized interpolant to Neumann data

while the additional condition (1.8) is replaced by

n∑

k=1

αkλ
t
kp`(t) = 0, 1 ≤ ` ≤ q

and the interpolation problem is solvable, if the additional condition

λt
kp(t) = 0 for all 1 ≤ k ≤ n and p ∈ P d

Q−1 implies p = 0

is imposed, replacing (1.10).
Another example of recovery from non-Lagrange data is the construction

of Lyapounov basins from data consisting of orbital derivatives [54, 55].
The flexibility to cope with general data is the key to various applications

of radial basis functions within methods solving partial differential equations.
Collocation techniques, as sketched in section 1.5 and treated in Chapter ??

in full detail, solve partial differential equations numerically by interpolation
of values of differential operators and boundary conditions.

Another important aspect is the possibility to implement additional linear
conditions or constraints like

λ(u) :=
∫

Ω
u(x)dx = 1
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on a trial function. For instance, this allows to handle conservation laws and
is inevitable for finite-volume methods. A constraint like the one above,
when used as additional data, adds another degree of freedom to the trial
space by addition of the basis function uλ(x) := λtφ(‖x − t‖2), and at the
same time it uses this additional degree of freedom to satisfy the constraint.
This technique deserves much more attention in applications.

2.3 Error Behavior

If exact data come from smooth functions f , and if smooth radial basis func-
tions φ are used for interpolation, users can expect very small interpolation
errors. In particular, the error goes to zero when the data samples are getting
dense. The actual error behavior is limited by the smoothness of both f and
φ. Quantitative error bounds can be obtained from the standard literature
[24, 135] and recent papers [106]. They are completely local, and they are in
terms of the fill distance

h := h(X, Ω) := sup
y∈Ω

min
x∈X

‖x − y‖2 (2.2)

of the discrete set X = {x1, . . . ,xn} of centers with respect to the domain
Ω where the error is measured. The interpolation error converges to zero
for h → 0 at a rate dictated by the minimum smoothness of f and φ. For
infinitely smooth radial basis functions like the Gaussian or multiquadrics,
convergence even is exponential [98, 143] like exp(−c/h). Derivatives are also
convergent as far as the smoothness of f and φ allows, but at a smaller rate,
of course.

For interpolation of the smooth peaks function provided by MATLAB
and used already in Figure 2, the error behavior on [−3, 3]2 as a function of
fill distance h is given by Figure 4. It can be clearly seen that smooth φ yield
smaller errors with higher convergence rates. In contrast to this, Figure 5
shows interpolation to the nonsmooth function

f(x, y) = 0.03 ∗ max(0, 6 − x2 − y2)2, (2.3)

on [−3, 3]2, where now the convergence rate is dictated by the smoothness
of f instead of φ and is thus more or less fixed. Excessive smoothness of φ
never spoils the error behavior, but induces excessive instability, as we shall
see later.
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Figure 4: Nonstationary interpolation to a smooth function as a function of
fill distance

2.4 Stability

But there is a serious drawback when using radial basis functions on dense
data sets, i.e.: with small fill distance. The condition of the matrices used
in (1.4) and (2.1) will get extremely large if the separation distance

S(X) :=
1

2
min

1≤i<j≤n
‖xi − xj‖2

of points of X = {x1, . . . ,xn} gets small. Figure 6 shows this effect in the
situation of Figure 4.

If points are distributed well, the separation distance S(X) will be pro-
portional to the fill distance h(X, Ω) of (2.2). In fact, since the fill distance is
the radius of the largest ball with arbitrary center in the underlying domain
Ω without any data point in its interior, the separation distance S(X) is the
radius of the smallest ball anywhere without any data point in its interior,
but with at least two points of X on the boundary. Thus for convex domains
one always has S(X) ≤ h(X, Ω). But since separation distance only depends
on the closest pair of points and ignores the rest, it is reasonable to avoid
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Figure 5: Nonstationary interpolation to a nonsmooth function as a function
of fill distance

unusually close points leading to some S(X) which is considerably smaller
than h(X, Ω). Consequently, a distribution of data locations in X is called
quasi–uniform if there is a positive uniformity constant γ ≤ 1 such that

γ h(X, Ω) ≤ S(X) ≤ h(X, Ω). (2.4)

To maintain quasi-uniformity, it suffices in most cases to delete “duplicates”.
Furthermore, there are sophisticated “thinning” techniques [49, 39, 136] to
keep fill and separation distance proportional, i.e.: to assure quasi-uniformity
at multiple scaling levels. We shall come back to this in section ??.

Unless radial basis functions are rescaled in a data-dependent way, it can
be proven [115] that there is a close link between error and stability, even
if fill and separation distance are proportional. In fact, both are tied to the
smoothness of φ, letting stability become worse and errors become smaller
when taking smoother radial basis functions. This is kind of an Uncertainty

Principle:

It is impossible to construct radial basis functions which guarantee
good stability and small errors at the same time.
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Figure 6: Condition as function of separation distance

We illustrate this by an example. Since [115] proves that the square of the
L∞ error roughly behaves like the smallest eigenvalue of the interpolation ma-
trix, Figure 7 plots the product of the MATLAB condition estimate condest
with the square of the L∞ error for the nonstationary interpolation of the
MATLAB peaks function, used already for Figures 4, 8, and 6 to show the
error and condition behavior there. Note that the curves do not vary much if
compared to Figure 6. Example ?? for the Method of Fundamental Solutions
shows a similarly close link between error and condition.

Thus smoothness of radial basis functions must be chosen with some
care, and chosen dependent on the smoothness of the function to be ap-
proximated. From the point of view of reproduction quality, smooth radial
basis functions can well recover nonsmooth functions, as proven by papers
concerning error bounds [106]. On the other hand, non-smooth radial ba-
sis functions will not achieve high convergence rates when approximating
smooth functions [123]. This means that using too much smoothness in the
chosen radial basis function is not critical for the error, but rather for the
stability. But in many practical cases, the choice of smoothness is not as
sensible as the choice of scale, as discussed in section 2.6.
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Figure 7: Squared L∞ error times condition as a function of fill distance

2.5 Regularization

The linear systems arising in radial basis function methods have a special
form of degeneration: the large eigenvalues usually are moderate, but there
are very small ones leading to bad condition. This is a paradoxical conse-
quence of the good error behavior we demonstrated in section 2.3. In fact,
since trial spaces spanned by translates of radial basis functions have very
good approximation properties, the linear systems arising in all sorts of re-
covery problems throughout this book will have good approximate solutions
reproducing the right-hand sides well, no matter what the condition number
of the system is. And the condition will increase, if trial centers are getting
close, because then certain rows and columns of the matrices AX of (1.5) are
approximately the same.

Therefore it makes sense to go for approximate solutions of the linear
systems, for instance by projecting the right-hand sides to spaces spanned
by eigenvectors corresponding to large eigenvalues. One way to achieve this
is to calculate a singular value decomposition first and then use only the
subsystem corresponding to large singular values. This works well beyond
the standard condition limits, as we shall demonstrate now. This analysis
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will apply without changes to all linear systems appearing in this book.
Let G be an m × n matrix and consider the linear system

Gx = b ∈ IRm (2.5)

which is to be solved for a vector x ∈ IRn. The system may arise from
any method using radial basis functions, including (1.3), (1.14), (1.16), (2.1)
and those of subsequent chapters, e.g.: (??), and (??). In case of colloca-
tion (Chapter ?? or the Method of Fundamental Solutions (Chapter ??),
or already for the simple recovery problem (1.3) there may be more test or
collocation points than trial centers or source points. Then the system will
have m ≥ n and it usually is overdetermined.

But if the user has chosen enough well-placed trial centers and a suitable
radial basis function for constructing trial functions, the previous section told
us that chances are good that the true solution can be well approximated
by functions from the trial space. Then there is an approximate solution x̂

which at least yields ‖Gx̂ − b‖2 ≤ η with a small tolerance η, and which
has a coefficient vector x̂ representable on a standard computer. Note that
η may also contain noise of a certain unknown level. The central problem is
that there are many vectors x̂ leading to small values of ‖Gx̂−b‖2, and the
selection of just one of them is an unstable process. But the reproduction
quality is much more important than the actual accuracy of the solution
vector x̂, and thus matrix condition alone is not the right aspect here.

Clearly, any reasonably well-programmed least-squares solver [58] should
do the job, i.e.: produce a numerical solution x̃ which solves

min
x∈IRn

‖Gx − b‖2 (2.6)

or at least guarantees ‖Gx̃ − b‖2 ≤ η. It should at least be able not to
overlook or discard x̂. This regularization by optimization works in many
practical cases, but we shall take a closer look at the joint error and stability
analysis, because even an optimizing algorithm will recognize that it has
problems to determine x̂ reliably if columns of the matrix G are close to
being linearly dependent.

By singular-value decomposition [58], the matrix G can be decom-
posed into

G = UΣVT (2.7)

where U is an m × m orthogonal matrix, Σ is an m × n matrix with zeros
except for singular values σ1, . . . , σn on the diagonal, and where VT is an
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n × n orthogonal matrix. Due to some sophisticated numerical tricks, this
decomposition can under normal circumstances be done with O(mn2 +nm2)
complexity, though it needs an eigenvalue calculation. One can assume

σ2
1 ≥ σ2

2 ≥ . . . ≥ σ2
n ≥ 0,

and the σ2
j are the nonnegative eigenvalues of the positive semidefinite n×n

matrix GTG.
The condition number of the non-square matrix G is then usually defined

to be σ1/σn. This is in line with the usual spectral condition number

‖G‖2‖G
−1‖2 for the symmetric case m = n. The numerical computation of

U and V usually is rather stable, even if the total condition is extremely
large, but the calculation of small singular values is hazardous. Thus the
following arguments can rely on U and V, but not on small singular values.

Using (2.7), the solution of either the minimization problem (2.6) or, in
the case m = n, the solution of (2.5) can be obtained and analyzed as follows.
We first introduce new vectors

c := UTb ∈ IRm and y := VTx ∈ IRn

by transforming the data and the unknowns orthogonally. Since orthogonal
matrices preserve Euclidean lengths, we rewrite the squared norm as

‖Gx − b‖2
2 = ‖UΣVTx − b‖2

2

= ‖ΣVTx − UT b‖2
2

= ‖Σy − c‖2
2

=
n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2
j

where now y1, . . . , yn are variables. Clearly, the minimum exists and is given
by the equations

σjyj = cj, 1 ≤ j ≤ n,

but the numerical calculation runs into problems when the σj are small and
imprecise in absolute value, because then the resulting yj will be large and
imprecise. The final transition to the solution x = Vy by an orthogonal
transformation does not improve the situation.

If we assume existence of a good solution candidate x̂ = Vŷ with ‖Gx̂−
b‖2 ≤ η, we have

n∑

j=1

(σj ŷj − cj)
2 +

m∑

j=n+1

c2
j ≤ η2. (2.8)
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A standard regularization strategy to construct a reasonably stable ap-
proximation y is to choose a positive tolerance ε and to define

yε
j :=

{ cj

σj
|σj| ≥ ε

0 |σj| < ε

i.e.: to ignore small singular values, because they are usually polluted by
roundoff and hardly discernible from zero. This is called the truncated

singular value decomposition (TSVD). Fortunately, one often has small
c2
j whenever σ2

j is small, and then chances are good that

‖Gxε − b‖2
2 =

∑

1 ≤ j ≤ n
|σj| ≥ ε

c2
j +

m∑

j=n+1

c2
j ≤ η2

holds for xε = Vyε.
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Figure 8: Error and condition of linear subsytems via SVD

Figure 8 is an example interpolating the MATLAB peaks function in
m = n = 441 regular points on [−3, 3]2 by Gaussians with scale 1, using the
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standard system (1.4). Following a fixed 441 × 441 singular value decom-
position, we truncated after the k largest singular values, thus using only k
degrees of freedom (DOF). The results for 1 ≤ k ≤ 441 show that there are
low-rank subsystems which already provide good approximate solutions. A
similar case for the Method of Fundamental Solutions will be provided by
Example ?? in Chapter ??.
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Figure 9: Error as function of regularization parameter δ2

But now we proceed with our analysis. In case of large cj for small σj,
truncation is insufficient, in particular if the dependence on the unknown
noise level η comes into focus. At least, the numerical solution should not
spoil the reproduction quality guaranteed by (2.8), which is much more im-
portant than an exact calculation of the solution coefficients. Thus one can
minimize ‖y‖2

2 subject to the essential constraint

n∑

j=1

(σjyj − cj)
2 +

m∑

j=n+1

c2
j ≤ η2, (2.9)

but we suppress details of the analysis of this optimization problem. Another,
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more popular possibility is to minimize the objective function

n∑

j=1

(σjyj − cj)
2 + δ2

n∑

j=1

y2
j

where the positive weight δ allows to put more emphasis on small coefficients
if δ is increased. This is called Tikhonov regularization.

The solutions of both settings coincide and take the form

yδ
j :=

cjσj

σ2
j + δ2

, 1 ≤ j ≤ n

depending on the positive parameter δ of the Tikhonov form, and for xδ :=
Vyδ we get

‖Gxδ − b‖2
2 =

n∑

j=1

c2
j

(

δ2

δ2 + σ2
j

)2

+
m∑

j=n+1

c2
j ,

which can me made smaller than η2 for sufficiently small δ. The optimal
value δ∗ of δ for a known noise level η in the sense of (2.9) would be defined
by the equation ‖Gxδ∗ − b‖2

2 = η2, but since the noise level is only rarely
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known, users will be satisfied to achieve a tradeoff between reproduction
quality and stability of the solution by inspecting ‖Gxδ − b‖2

2 for varying δ
experimentally.
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Figure 11: The L-curve for the same problem

We now repeat the example leading to Figure 8, replacing the truncation
strategy by the above regularization. Figure 9 shows how the error ‖Gxδ −
b‖∞,X depends on the regularization parameter δ. In case of noise, users can
experimentally determine a good value for δ even for an unknown noise level.
The condition of the full matrix was calculated by MATLAB as 1.46 · 1019,
but it may actually be higher. Figure 10 shows that the coefficients |cj| are
indeed rather small for large j, and thus regularization by truncated SVD
will work as well in this case.

From Figures 10 and 9 one can see that the error ‖Gxδ−b‖ takes a sharp
turn at the noise level. This has led to the L-curve method for determining
the optimal value of δ, but the L-curve is defined differently as the curve

δ 7→ (log ‖yδ‖2
2, log ‖Gxδ − b‖2

2).

The optimal choice of δ is made where the curve takes its turn, if it does so,
and there are various way to estimate the optimal δ, see [62, 63, 64] including
a MATLAB software package.
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Figure 11 shows the typical L-shape of the L-curve in case of noise, while
in the case of exact data there is no visible sharp turn within the plot range.
The background problem is the same as for the previous figures. A specific
example within the Method of Fundamental Solutions will be presented in
section ?? on Inverse Problems.

Consequently, users of radial basis function techniques are strongly ad-
vised to take some care when choosing a linear system solver. The solution
routine should incorporate a good regularization strategy or at least auto-
matically project to stable subspaces and not give up quickly due to bad
condition. Further examples for this will follow in later chapters of the book.

But for large systems, the above regularization strategies are debatable.
A singular-value decomposition of a large system is computationally expen-
sive, and the solution vector will usually not be sparse, i.e.: the evaluation
of the final solution at many points is costly. In section 2.9 we shall demon-
strate that linear systems arising from radial basis functions often have good
approximate solutions with only few nonzero coefficients, and the correspond-
ing numerical techniques are other, and possibly preferable regularizations
which still are under investigation.

2.6 Scaling

If radial basis functions are used directly, without any additional tricks and
treats, users will quickly realize that scaling is a crucial issue. The literature
has two equivalent ways of scaling a given radial basis function φ, namely
replacing it by either φ(‖x − y‖2/c) or by φ(ε‖x − y‖2) with c and ε being
positive constants. Of course, these scalings are equivalent, and the case
ε → 0, c → ∞ is called the flat limit [40]. In numerical methods for solving
differential equations, the scale parameter c is preferred, and it is called
shape factor there. Readers should not be irritated by slighly other ways
of scaling, e.g.:

φc(‖x‖2) :=
√

c2 + ‖x‖2
2 = c ·

√

1 +
‖x‖2

2

c2
= c · φ1

(

‖x‖2

c

)

for multiquadrics, because the outer factor c is irrelevant when forming trial
spaces from functions (1.2). Furthermore, it should be kept in mind that
only the polyharmonic spline and its special case, the thin-plate spline

generate trial spaces which are scale-invariant.
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Like the tradeoff between error and stability when choosing smoothness
(see the preceding section), there often is a similar tradeoff induced by scaling:
a “wider” scale improves the error behavior but induces instability. Clearly,
radial basis functions in the form of sharp spikes will lead to nearly diagonal
and thus well-conditioned systems (1.4), but the error behavior is disastrous,
because there is no reproduction quality between the spikes. The opposite
case of extremely “flat” and locally close to constant radial basis functions
leads to nearly constant and thus badly conditioned matrices, while many ex-
periments show that the reproduction quality is even improving when scales
are made wider, as far as the systems stay solvable.
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Figure 12: Error as function of relative scale, smooth case

For analytic radial basis functions (i.e.: in C∞ with an expansion into
a power series), this behavior has an explanation: the interpolants often
converge towards polynomials in spite of the degeneration of the linear sys-
tems [40, 117, 90, 91, 119]. This has implications for many examples in this
book which approximate analytic solutions of partial differential equations
by analytic radial basis functions like Gaussians or multiquadrics: whatever
is calculated is close to a good polynomial approximation to the solution.
Users might suggest to use polynomials right away in such circumstances,

33



but the problem is to pick a good polynomial basis. For multivariate prob-
lems, choosing a good polynomial basis must be data-dependent, and it is
by no means clear how to do that. It is one of the intriguing properties
of analytic radial basis functions that they automatically choose good data-
dependent polynomial bases when driven to their “flat limit”. There are new
techniques [89, 50] which circumvent the instability at large scales, but these
are still under investigation.
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Figure 13: Error as function of relative scale, nonsmooth case

Figure 12 shows the error for interpolation of the smooth MATLAB peaks

function on a fixed data set, when interpolating radial basis functions φ are
used with varying scale relative to a φ-specific starting scale given in the
legend. Only those cases are plotted which have both an error smaller than
1 and a condition not exceeding 1012. Since the data come from a function
which has a good approximation by polynomials, the analytic radial basis
functions work best at their condition limit. But since the peaks function
is a superposition of Gaussians of different scales, the Gaussian radial basis
function still shows some variation in the error as a function of scale.

Interpolating the nonsmooth function (2.3) shows a different behavior
(see Figure 13), because now the analytic radial basis functions have no
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advantage for large scales. In both cases one can see that the analytic radial
basis functions work well only in a rather small scale range, but there they
beat the other radial basis functions. Thus it often pays off to select a good
scale or to circumvent the disadvantages of large scales [89, 50].
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Figure 14: Stationary interpolation to a smooth function at small starting
scales

Like in finite element methods, users might want to scale the basis func-
tions in a data-dependent way, making the scale c in the sense of using
φ(‖x − y‖2/c) proportional to the fill distance h as in (2.2). This is often
called a stationary setting, e.g.: in the context of wavelets and quasi-
interpolation. If the scale is fixed, the setting is called nonstationary, and
this is what we were considering up to this point. Users must be aware
that the error and stability analysis, as described in the previous sections,
apply to the nonstationary case, while the stationary case will not converge
for h → 0 in case of unconditionally positive definite radial basis functions
[21, 22]. But there is a way out: users can influence the “relative” scale of
c with respect to h in order to achieve a good compromise between error
and stability. The positive effect of this can easily be observed [116], and for
special situations there is a sound theoretical analysis called approximate
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approximation [100]. Figure 14 shows the stationary error behavior for
interpolation of the smooth MATLAB peaks function when using different
radial basis functions φ at different starting scales. It can be clearly seen how
the error goes down to a certain small level depending on the smoothness
of φ, and then stays roughly constant. Using larger starting radii decreases
these saturation levels, as Figure 15 shows.
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Figure 15: Stationary interpolation to a smooth function at wider starting
scales

Due to the importance of relative scaling, users are strongly advised to
always run their programs with an adjustable scale of the underlying radial
basis functions. Experimenting with small systems at different scales give
a feeling of what happens, and users can fix the relative scale of c versus h
rather cheaply. Final runs on large data can then use this relative scaling.
In many cases, given problems show a certain “intrinsic” preference for a
certain scale, as shown in Figure 13, but this is an experimental observation
which still is without proper theoretical explanation.

36



2.7 Practical Rules

If users adjust the smoothness and the scaling of the underlying radial basis
function along the lines of the previous sections, chances are good to get
away with relatively small and sufficiently stable systems. The rest of the
book contains plenty of examples for this observation.

For completeness, we add a few rules for Scientific Computing with radial
basis functions, in particular concerning good choices of scale and smooth-
ness. Note that these apply also to methods for solving partial differential
equations in later chapters.

• Always allow a scale adjustment.

• If possible, allow different RBFs to choose from.

• Perform some experiments with scaling and choice of RBF before you
turn to tough systems for final results.

• If you do not apply iterative solvers, do not worry about large condition
numbers, but use a stabilized solver, e.g.: based on Singular Value
Decomposition (SVD). Remember that unless you apply certain tricks,
getting a good reproduction quality will always require bad condition.
If you need k decimal digits of final accuracy for an application, do not
bother about condition up to 1012−k.

• If you use compactly supported radial basis functions, do not expect
them to work well when each support contains less than about 50 neigh-
bors. This means that the bandwidth of large sparse systems should
not be below 50. Increasing bandwidth will usually improve the quality
of the results at the expense of computational complexity.

• When using either compactly supported or quickly decaying radial basis
functions of high smoothness, the theoretical support and the practical
support do not coincide. In such cases one should enforce sparsity by
chopping the radial basis functions, in spite of losing positive definite-
ness properties. But this should be done with care, and obeying the
“50 neighbors” rule above.

• If systems get large and ill-conditioned, and if change of scale and RBF
do not improve the situation, try methods described in the following
section.
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• Use blockwise iteration (“domain decomposition”) first, because it is
simple and often rather efficient.

• Blockwise iteration can be speeded up by precalculation of LR decom-
positions of blocks.

• If all of this does not work, try partitions of unity, multilevel methods,
or special preconditioning techniques. You are now at current research
level, and you should look into the next section.

2.8 Large Systems: Computational Complexity

Handling unavoidably large problems raises questions of computational com-
plexity which deserve a closer look. First, there is the difference between the
complexities of solving and evaluation. The latter addresses the evaluation
of trial functions like (1.7) for large n at many evaluation points x ∈ IRd,
while the former concerns the calculation of the coefficients.

Evaluation complexity can be kept at bay by localization techniques need-
ing only a few “local” coefficients to evaluate the trial function. There are
several possibilities for localization:

• Using compactly supported radial basis functions [142, 132, 23]
leads to sparse systems and localized evaluation. In particular, Wend-
land’s functions have been applied successfully in plenty of applications,
e.g.: [48, 27, 122, 27, 29, 139, 35, 36, 56, 103, 28, 137, 138, 86, 109,
43, 112, 140, 1] and many others. Since the correspondent radial ba-
sis functions have limited smoothness (and thus low convergence rates,
following section 2.3), the error will be larger than when using ana-
lytic radial basis functions, but the stability is much better. However,
they again need careful scaling, which now influences the evaluation
complexity and the sparsity. “Flat” scaling improves the error behav-
ior at the price of increasing instability and complexity. Together with
“thinning” algorithms providing data at different resolution levels, com-
pactly supported radial basis functions also allow efficient multiscale

techniques [48, 41, 42, 105, 53, 28, 80].

• partition of unity methods [102, 6, 59, 60, 61, 134, 126, 109, 129] are
a flexible and general tool for localizing any trial space. They have the
advantage not to spoil the local error behavior of the original trial space
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while localizing both the evaluation and the solving. The basic idea is
to start with a selection of smooth “weight” functions ϕi : IRd → IR
with overlapping compact supports Ωi and summing up to 1 globally.
If a trial space Ui is given on each of the subdomains Ωi, a global trial
function u can be superimposed from local trial functions ui ∈ Ui by
the localized summation

u(x) :=
∑

i

ui(x)ϕi(x) =
∑

i : x∈Ωi

ui(x)ϕi(x).

Depending on the problem to be solved, one can plug the above rep-
resentation into the full problem or use local methods to generate the
local trial functions ui more or less independently, thus localizing also
the solution stage. This class of techniques deserves much more atten-
tion from scientists and engineers working in applications.

• Multipole expansions work best for radial basis functions with series
expansions around infinity. They aggregate “far” points into “panels”
and use expansions to simplify evaluation. This technique is very suc-
cessful in certain applications [15, 12, 13, 8, 10, 37] though it is not
easy to code.

• Fast evaluation using transforms is another choice [110, 47, 113], but
it has not yet found its way into applications.

The dominant methods for reducing the complexity of solving large systems
like (1.4) are domain decomposition and preconditioning. In classi-
cal analysis, domain decomposition means the splitting of a boundary value
problem into smaller boundary value problems, using interface conditions for
coupling the local problems. This was also done for problems solved via ra-
dial basis functions (e.g.: [144, 95, 78]), but the majority of authors working
with radial basis functions uses the term in a different way. We explain it
below, together with its close connection to preconditioning.

Of course, one can solve a huge problem (1.4) or (1.9) by a block-wise
Gauss-Seidel or Jacobi iteration, where each “block” is defined by taking a
small set of points in a small subdomain. Each block defines a local lin-
ear system where the unused data are shifted to the right-hand side [139].
These local systems are solved independently and in turn. It does not matter
whether the domains overlap or not. In most cases, the numerical results for
suitably chosen subdomains usually are much better than for direct iterative
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methods. In particular, the LU decompositions of the small local systems
can be stored and re-used all over again in order to save computation time.
Furthermore, there are different strategies for choosing good “blocks”.

This basic technique comes in various forms. It can be reformulated as a
block-wise preconditioner or as a Krylov subspace iteration [46, 45]
employing local cardinal functions in case of plain interpolation [9, 14, 85,
104, 96, 97, 20]. It can also be seen as an additive [77] or as a multiplicative
Schwarz decomposition [14] depending whether Jacobi or Gauss-Seidel
is used as the inner iteration. For regular data, these preconditioners can
achieve a fixed accuracy by a fixed number of iterations of the conjugate
gradient method which is not dependent on the number of equations [7].

Altogether, there are many successful techniques now for handling large
and ill-conditioned systems (see e.g.: an overview in [85]), and there are a
few promising theoretical investigations [9, 46, 7, 20, 45, 117], but a general
and complete mathematical foundation for handling large systems arising in
Partial Differential Equations still is missing.

2.9 Sensitivity to Noise

So far, the discussion focused on noiseless data, with the exception of Figure
9. If users expect noise in the data, an interpolatory recovery along the lines
of section 2.1 is not appropriate, because it treats noise as data. In most of the
later sections of this book, data are right-hand sides or boundary values for
partial differential equations, and they usually are given as noiseless functions
which can be evaluated anywhere. Thus the rest of the book does not treat
noisy inputs in detail. But at this point, some remarks are appropriate.

In all noisy situations, interpolation should be replaced by approximation.
This can be done in various ways leading to stabilization.

A primitive, but often quite sufficient technique is to run a smoothing pro-
cess on the raw data and to recover the unknown function from the smoothed
data instead of the raw data.

Another standard trick is to solve (1.4) in the L2 sense with oversampling,
if only n << m trial points xj are used for m data points yk. The trial points
can then be placed rather freely with a large separation distance, while a
small separation distance of data points will not have a dramatic effect on
stability any more. However, there is not very much theoretical and practical
work done on unsymmetric recovery techniques [118, 121, 119].
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A third possibility is the old Levenberg-Marquardt trick of adding a pos-
itive value λ into the diagonal of the kernel matrix of (1.4) with entries
φ(‖xj − xk‖2). As is well-known from literature on spline smoothing, this
leads to an approximant achieving a tradeoff between smoothness and re-
production quality which can be controlled by λ. If a stochastic background
is available, there are methods to estimate λ properly, e.g.: by cross-

validation. However, in most cases users adjust λ experimentally. This
technique also helps to fight instability when working on irregularly dis-
tributed data [136], because it is able to shift the stability from dependence
on the separation distance to dependence on the fill distance (see section
2.4).

A fourth possibilty is regularization, for example using a singular-value
decomposition as described in section 2.5.

In general, one can replace the system (1.4) by an optimization method

which penalizes the reproduction error on one hand and either a complexity or
smoothness criterion on the other, allowing a fair amount of control over the
tradeoff between error and stability. Penalties for the discrete reproduction
error can be made in various discrete norms, the `1 and `∞ case having the
advantage to lead to linear optimization restrictions, while the discrete `2

norm leads to quadratic ones. For radial basis functions of the form (1.2) or
(1.7), the quadratic form

‖u‖2
φ :=

n∑

j,k=1

αjαkφ(‖xj − xk‖2) (2.10)

is a natural candidate for penalizing high derivatives without evaluating any.
This is due to the standard fact that the above expression is a squared norm in
a native space of functions with about half the smoothness of φ, penalizing
all available derivatives there. For details, we have to refer to basic literature
[24, 135] on the theory of radial basis functions. But even though we skip
over native spaces here, all users should be aware that they always lure in the
theoretical background, and that all methods based on radial basis functions
implicitly minimize the above quadratic form under all functions in the native
space having the same data. This has a strong regularization effect which
is the background reason why radial basis function or more general kernel

methods work well for many ill-posed and inverse problems [75, 93, 128,
34, 33, 76, 81, 94, 114, 107]. The above strategy of minimizing the quadratic
form (2.10) also is central for modern methods of machine learning, but
we cannot pursue this subject in detail here [38, 125, 127].
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Figure 16: Connection between ε and the number n(ε) of necessary points

Let us use minimization of the quadratic form (2.10) to provide an exam-
ple for the tradeoff between error and complexity. Again, the basic situation
is interpolation to the MATLAB peaks function, this time in 14×14=196
regularly distributed points in [−3, 3]2 by Gaussians of scale 1. The global
L∞[−3, 3]2 error of the exact interpolation on these data is 0.024, evalu-
ated on a fine grid with 121×121=14641 points. But now we minimize the
quadratic form (2.10) under the constraints

−ε ≤
n∑

j=1

αjφ(‖xj − xk‖2) − f(xk) ≤ ε, 1 ≤ k ≤ n (2.11)

for positive ε. The case of ε = 0 is exact interpolation using all 196 data
points and trial functions. For positive ε, the usual Karush-Kuhn-Tucker
conditions imply that only those points xk are actually used where one of
the bounds in (2.11) is attained with equality. The number n(ε) of required
points grows up to the maximally possible n(0) = 196 when ε decreases.
Figure 16 shows this for the case of exact and noisy data.

But even more interesting is the behavior of the global L∞[−3, 3]2 error
E(ε) as a function of ε. Figure 17 shows that E(ε) roughly follows the
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behavior of ε when plotted as a function of the required points n(ε). Both
curves are experimentally available, and one can read off that the optimal
choice of ε in the noisy case is at the point where the curve takes its L-turn,
i.e.: at the point of largest curvature around n = 40. This can be viewed as
an experimental method to determine the noise level. Note that it does not
pay off to use more points, and note the similarity to the L-curve technique
[65].

But also for exact data, these curves are useful. Since the maximum value
of the peaks function is about 8.17, one can get a relative global accuracy of
1% using roughly 60 points for exact data. It makes no sense to use the full
196 points, even for exact data, if exact results are not required. Of course,
larger noise levels lead to smaller numbers of required points, but a thorough
investigation of these tradeoff effects between error and complexity is still a
challenging research topic.
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Figure 17: Error E(ε) as a function of the number n(ε) of necessary points

2.10 Time-dependent Functions

Interpolation and approximation of time-dependent functions u(x, t) can eas-
ily be achieved by choosing a fixed spatial discretization via points y1, . . . ,yn
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and letting the coefficients in the representations (1.2) and (1.7) be time-
dependent. If βij are the coefficients of the fixed inverse of the matrix in
(1.4) (the case of (1.9) can be treated similarly), then the approximation to
u(x, t) is of the simple form

ũ(x, t) =
n∑

k=1

n∑

j=1

βkju(xj, t)

︸ ︷︷ ︸

αk(t)

φ(‖x − xk‖2)

=
n∑

k=1

αk(t)φ(‖x − xk‖2)

(2.12)

which can be plugged into other parts of the underlying problem. For in-
stance, it allows an easy spatial resampling for fixed t, and it provides arbi-
trary approximate derivatives like e.g.:

∂ũ

∂xj

=
n∑

k=1

αk(t)
∂φ(‖x − xk‖2)

∂xj

=
n∑

k=1

n∑

j=1

βkju(xj, t)
∂φ(‖x − xk‖2)

∂xj

in terms of time-dependent values of either u or the coefficients αk. For-
mulas like this are useful when considering time-dependent meshless spatial
discretizations, because they make resampling easy, avoiding re-meshing.

But the above technique can also serve for line methods solving partial
differential equations like

∂u

∂t
(x, t) = F (L(u(x, t)),x, t) (2.13)

with a linear spatial differential operator L because of

α′
k(t) =

n∑

j=1

βkj
∂ũ

∂t
(xj, t), 1 ≤ k ≤ n

=
n∑

j=1

βkjF

(
n∑

k=1

αk(t)L(φ(‖x − xk‖2))|x=xj
,xj, t

)

leading to a system of ordinary differential equations. Along these lines.
radial basis function methods will be used in later parts of the book, in
particular in chapters ?? and ??.

44



References

References

[1] R. Ahrem, A. Beckert, and H. Wendland. A meshless spatial coupling
scheme for large-scale fluid-structure-interaction problems. Computer
Modeling in Engineering and Sciences, 12:121–136, 2006.

[2] N. Arad, N. Dyn, and D. Reisfeld. Image warping by radial basis
functions: applications to facial expressions. Graphical Models and
Image Processing, 56:161–172, 1994.

[3] S.N. Atluri and T.-L. Zhu. A new meshless local Petrov-Galerkin
(MLPG) approach in Computational mechanics. Computational Me-
chanics, 22:117–127, 1998.

[4] S.N. Atluri and T.-L. Zhu. A new meshless local Petrov-Galerkin
(MLPG) approach to nonlinear problems in Computer modeling and
simulation. Computer Modeling and Simulation in Engineering, 3:187–
196, 1998.

[5] S.N. Atluri and T.-L. Zhu. The meshless local Petrov-Galerkin (MLPG)
approach for solving problems in elasto-statics. Computational Mechan-
ics, 25:169–179, 2000.

[6] I. Babuska and J.M. Melenk. The Partition of Unity Method. Int. J.
Numer. Meths. Eng., 40:727–758, 1997.

[7] B.J.C. Baxter. Preconditioned conjugate gradients, radial basis func-
tions, and Toeplitz matrices. Comput. Math. Appl., 43:305–318, 2002.

[8] R.K. Beatson and E. Chacko. Fast evaluation of radial basis functions:
A multivariate momentary evaluation scheme. In A. Cohen, C. Rabut,
and L.L. Schumaker, editors, Curve and Surface Fitting: Saint-Malo
1999, pages 37–46. Vanderbilt University Press, 2000.

[9] R.K. Beatson, J.B. Cherrie, and C.T. Mouat. Fast fitting of radial
basis functions: Methods based on preconditioned GMRES iteration.
Adv. Comput. Math., 11:253–270, 1999.

45



[10] R.K. Beatson, J.B. Cherrie, and D.L. Ragozin. Polyharmonic splines
in IRd: Tools for fast evaluation. In A. Cohen, C. Rabut, and L.L.
Schumaker, editors, Curve and Surface Fitting: Saint-Malo 1999, pages
47–56. Vanderbilt University Press, 2000.

[11] R.K. Beatson, G. Goodsell, and M.J.D. Powell. On multigrid tech-
niques for thin plate spline interpolation in two dimensions. In The
mathematics of numerical analysis, volume 32 of Lectures in Appl.
Math., pages 77–97. Amer. Math. Soc., Providence, RI, 1996.

[12] R.K. Beatson and L. Greengard. A short course on fast multipole
methods. In M. Ainsworth, J. Levesley, W. Light, and M. Marletta,
editors, Wavelets, Multilevel Methods and Elliptic PDEs, pages 1–37.
Oxford University Press, 1997.

[13] R.K. Beatson and W.A. Light. Fast evaluation of radial basis functions:
Methods for two–dimensional polyharmonic splines. IMA Journal of
Numerical Analysis, 17:343–372, 1997.

[14] R.K. Beatson, W.A. Light, and S. Billings. Fast solution of the radial
basis function interpolation equations: domain decomposition meth-
ods. SIAM J. Sci. Comput., 22(5):1717–1740, 2000.

[15] R.K. Beatson and G.N. Newsam. Fast evaluation of radial basis func-
tions. I. Comput. Math. Appl., 24(12):7–19, 1992. Advances in the
theory and applications of radial basis functions.

[16] T. Belytschko, Y. Krongauz, D.J. Organ, M. Fleming, and P. Krysl.
Meshless methods: an overview and recent developments. Computer
Methods in Applied Mechanics and Engineering, special issue, 139:3–
47, 1996.

[17] M. Botsch and L. Kobbelt. Real-time shape editing using radial basis
functions. In Computer Graphics Forum, volume 24, pages 611 – 621,
2005.

[18] D. Braess. Finite Elements. Theory, Fast Solvers and Applications in
Solid Mechanics. Cambridge University Press, 2001.

[19] S.C. Brenner and L.R. Scott. The Mathematical Theory of Finite Ele-
ment Methods, Second edition. Springer, 2002.

46



[20] D. Brown, L. Ling, E.J. Kansa, and J. Levesley. On approximate
cardinal preconditioning methods for solving PDEs with radial basis
functions. Engineering Analysis with Boundary Elements, 19:343–353,
2005.

[21] M.D. Buhmann. Convergence of univariate quasi-interpolation using
multiquadrics. IMA J. Numer. Anal., 8:365–383, 1988.

[22] M.D. Buhmann. Multivariate cardinal interpolation with radial–basis
functions. Constr. Approx., 6:225–255, 1990.

[23] M.D. Buhmann. Radial functions on compact support. Proceedings of
the Edinburgh Mathematical Society, 41:33–46, 1998.

[24] M.D. Buhmann. Radial Basis Functions, Theory and Implementations.
Cambridge University Press, 2003.

[25] J.C. Carr, R.K. Beatson, J.B. Cherrie, T.J. Mitchell, W.R. Fright, B.C.
McCallum, and T.R. Evans. Reconstruction and representation of 3D
objects with radial basis functions. In Computer Graphics Proceedings,
pages 67–76. Addison Wesley, 2001.

[26] J.C. Carr, W.R. Fright, and R.K. Beatson. Surface interpolation with
radial basis functions for medical imaging. IEEE Transactions on Med-
ical Imaging, 16:96–107, 1997.

[27] C.S. Chen, C.A. Brebbia, and H. Power. Dual reciprocity method using
compactly supported radial basis functions. Comm. Num. Meth. Eng.,
15:137–150, 1999.

[28] C.S. Chen, M.A. Golberg, M. Ganesh, and A.H.-D. Cheng. Multilevel
compact radial functions based computational schemes for some elliptic
problems. Computers and Mathematics with Application, 43:359–378,
2002.

[29] C.S. Chen, M.D. Marcozzi, and S. Choi. The method of fundamental
solutions and compactly supported radial basis functions: a meshless
approach to 3D problems. In Boundary elements, XXI (Oxford, 1999),
volume 6 of Int. Ser. Adv. Bound. Elem., pages 561–570. WIT Press,
Southampton, 1999.

47



[30] W. Chen. Symmetric boundary knot method. Engineering Analysis
with Boundary Elements, 26:489–494, 2002.

[31] W. Chen and Y.C. Hon. Numerical convergence of boundary
knot method in the analysis of Helmholtz, modified Helmholtz, and
convection-diffusion problems. Computer Methods Appl. Mech. Engng.,
192:1859–1875, 2003.

[32] W. Chen and M. Tanaka. New insights into boundary-only and domain-
type RBF methods. Int. J. Nonlinear Sci. & Numer. Simulation, 1:145–
151, 2000.

[33] A.H.-D. Cheng and J.J.S.P. Cabral. Direct solution of certain ill-posed
boundary value problems by collocation method. In A. Kassab, C.A.
Brebbia, E. Divo, and D. Poljak, editors, Boundary Elements XXVII,
pages 35–44, 2005.

[34] A.H.-D. Cheng and J.J.S.P. Cabral. Direct solution of ill-posed bound-
ary value problems by radial basis function collocation method. Inter-
nat. J. Numer. Methods Engrg., 64(1):45–64, 2005.

[35] A.H.-D. Cheng, D.-L. Young, and J.-J. Tsai. Solution of Poisson’s equa-
tion by iterative DRBEM using compactly supported, positive definite
radial basis function. Eng. Analy. Boundary Elements, 24:549–557,
2000.

[36] A.H.-D. Cheng, D.-L. Young, and J.-J. Tsai. Solution of Poisson’s equa-
tion by iterative DRBEM using compactly supported, positive definite
radial basis function. Eng. Analy. Boundary Elements, 24:549–557,
2000.

[37] J.B. Cherrie, R.K. Beatson, and G.N. Newsam. Fast evaluation of
radial basis functions: Methods for generalised multiquadrics in IRn.
SIAM J. Sci. Comput., 23:1272–1310, 2002.

[38] N. Cristianini and J. Shawe-Taylor. An introduction to support vector
machines and other kernel-based learning methods. Cambridge Univer-
sity Press, Cambridge, 2000.

48



[39] L. Demaret, N. Dyn, M.S. Floater, and A. Iske. Adaptive thinning for
terrain modelling and image compression. In Advances in multireso-
lution for geometric modelling, Math. Vis., pages 319–338. Springer,
Berlin, 2005.

[40] T.A. Driscoll and B. Fornberg. Interpolation in the limit of increasingly
flat radial basis functions. Comput. Math. Appl., 43:413–422, 2002.

[41] G.E. Fasshauer. On smoothing for multilevel approximation with ra-
dial basis functions. In C. K. Chui and L.L. Schumaker, editors, Ap-
proximation Theory IX, Vol. 2: Computational Aspects, pages 55–62,
Nashville, 1998. Vanderbilt University Press.

[42] G.E. Fasshauer. Solving differential equations with radial basis func-
tions: Multilevel methods and smoothing. Adv. Comput. Math.,
11:139–159, 1999.

[43] G.E. Fasshauer. Approximate moving least-squares approximation
with compactly supported radial weights. In Meshfree methods for
partial differential equations (Bonn, 2001), volume 26 of Lect. Notes
Comput. Sci. Eng., pages 105–116. Springer, Berlin, 2003.

[44] G.E. Fasshauer. RBF collocation methods and pseudospectral meth-
ods. Preprint, 2006.

[45] A.C. Faul, G. Goodsell, and M.J.D. Powell. A Krylov subspace al-
gorithm for multiquadric interpolation in many dimensions. IMA J.
Numer. Anal., 25(1):1–24, 2005.

[46] A.C. Faul and M.J.D. Powell. Krylov subspace methods for radial
basis function interpolation. In Numerical analysis 1999 (Dundee),
volume 420 of Chapman & Hall/CRC Res. Notes Math., pages 115–
141. Chapman & Hall/CRC, Boca Raton, FL, 2000.

[47] M. Fenn and G. Steidl. Fast NFFT based summation of radial func-
tions. Sampl. Theory Signal Image Process., 3(1):1–28, 2004.

[48] M.S. Floater and A. Iske. Multistep scattered data interpolation using
compactly supported radial basis functions. J. Comput. Applied Math.,
73:65–78, 1996.

49



[49] M.S. Floater and A. Iske. Thinning algorithms for scattered data in-
terpolation. BIT, 38:4:705–720, 1998.

[50] B. Fornberg and G. Wright. Stable computation of multiquadric inter-
polants for all values of the shape parameter. Comput. Math. Appl.,
48(5-6):853–867, 2004.

[51] C. Franke and R. Schaback. Convergence order estimates of meshless
collocation methods using radial basis functions. Adv. Comput. Math.,
8:381–399, 1998.

[52] C. Franke and R. Schaback. Solving partial differential equations by
collocation using radial basis functions. Appl. Math. Comput., 93:73–
82, 1998.

[53] E.C. Gartland G.E. Fasshauer and J.W. Jerome. Algorithms defined
by Nash iteration: some implementations via multilevel collocation and
smoothing. J. Comp. Appl. Math., 119:161–183, 2000.

[54] P. Giesl and H. Wendland. Approximating the basin of attrac-
tion of time-periodic ODEs by meshless collocation. Preprint Gttin-
gen/Mnchen, 2006.

[55] P. Giesl and H. Wendland. Meshless collocation: Error estimates with
application to dynamical systems. Preprint Gttingen/Mnchen, 2006.

[56] M.A. Golberg, C.S. Chen, and M. Ganesh. Particular solutions of
3D Helmholtz-type equations using compactly supported radial basis
functions. Eng. Anal. with Boundary Elements, 24:539–547, 2000.

[57] M.A. Golberg, C.S. Chen, and S. Karur. Improved multiquadric ap-
proximation for partial differential equations. Engineering Analysis
with Boundary Elements., 18(1):9–17, 1996.

[58] G. Golub and C. van Loan. Matrix computations. The Johns Hopkins
University Press, 1996. Third edition.

[59] M. Griebel and M.A. Schweitzer. A Particle-Partition of Unity Method
for the solution of Elliptic, Parabolic and Hyperbolic PDE. SIAM J.
Sci. Comp., 22(3):853–890, 2000.

50



[60] M. Griebel and M.A. Schweitzer. A particle-partition of unity method
- part II: Efficient cover construction and reliable integration. SIAM
J. Sci. Comput., 23:1655–1682, 2002.

[61] M. Griebel and M.A. Schweitzer. A particle-partition of unity method -
part III: A multilevel solver. SIAM J. Sci. Comput., 24:377–409, 2002.

[62] P.C. Hansen. Analysis of discrete ill-posed problems by means of the
l-curve. SIAM Review, 34:561–580, 1992.

[63] P.C. Hansen. Regularization tools: a MATLAB package for analysis
and solution of discrete ill-posed problems. Numerical Algorithms, 6:1–
35, 1994.

[64] P.C. Hansen. The L-curve and its use in the numerical treatment of
inverse problems. In P. Johnston, editor, Computational Inverse Prob-
lems in Electrocardiology, Advances in Computational Bioengineering
Series. WIT Press, Southampton, 2000.

[65] P.C. Hansen and D.P. O’Leary. The use of the l-curve in the regu-
larization of discrete ill-posed problems. SIAM Journal of Scientific
Computing, 14:1487–1503, 1993.

[66] R.L. Hardy. Multiquadric equations of Topography and other irregular
surfaces. Journal of Geophysical Research, 176:1905–1915, 1971.

[67] Y.C. Hon. Typhoon surge in Tolo Harbour of Hong Kong - an approach
using finite element method with quadrilateral elements and parallel
processing technique. Chinese J. Num. Math. Appl., 15(4):21–33, 1993.

[68] Y.C. Hon. A quasi-radial basis function method for American options
pricing. Comput. Math. Applic., 43(3-5):513–524, 2002.

[69] Y.C. Hon and W. Chen. Boundary knot method for 2D and 3D
Helmholtz and convection-diffusion problems with complicated geom-
etry. Int. J. Numer. Methd. Engng, 56:1931–1948, 2003.

[70] Y.C. Hon and X.Z. Mao. A multiquadric interpolation method for
solving initial value problems. Sci. Comput., 12(1):51–55, 1997.

[71] Y.C. Hon and X.Z. Mao. An efficient numerical scheme for Burgers’
equation. Appl. Math. Comput., 95(1):37–50, 1998.

51



[72] Y.C. Hon and X.Z. Mao. A radial basis function method for solving
option pricing model. Int. J. Financial Engineering, 8(1):31–49, 1999.

[73] Y.C. Hon and R. Schaback. On unsymmetric collocation by radial basis
functions. J. Appl. Math. Comp., 119:177–186, 2001.

[74] Y.C. Hon and R. Schaback. Solvability of partial differential equations
by meshless kernel methods. to appear in Adv. in Comp. Math., 2005.

[75] Y.C. Hon and T. Wei. A meshless scheme for solving inverse problems
of Laplace equation. In Recent development in theories & numerics,
pages 291–300. World Sci. Publishing, River Edge, NJ, 2003.

[76] Y.C. Hon and T. Wei. The method of fundamental solution for solving
multidimensional inverse heat conduction problems. CMES Comput.
Model. Eng. Sci., 7(2):119–132, 2005.

[77] Y.C. Hon and Z.M. Wu. Additive Schwarz domain decomposition with
a radial basis approximation. Int. J. Appl. Math., 4:81–98, 2000.

[78] M.S. Ingber, C.S. Chen, and J.A. Tanski. A mesh free approach using
radial basis functions and parallel domain decomposition for solving
three-dimensional diffusion equations. Internat. J. Numer. Methods
Engrg., 60:2183–2201, 2004.

[79] A. Iske. Reconstruction of functions from generalized Hermite-Birkhoff
data. In C.K. Chui and L.L. Schumaker, editors, Approximation Theory
VIII, Vol. 1, pages 257–264. World Scientific, Singapore, 1995.

[80] A. Iske. Multiresolution methods in scattered data modelling, volume 37
of Lecture Notes in Computational Science and Engineering. Springer-
Verlag, Berlin, 2004.

[81] B. Jin and Y. Zheng. Boundary knot method for some inverse problems
associated with the Helmholtz equation. Internat. J. Numer. Methods
Engrg., 62(12):1636–1651, 2005.

[82] E.J. Kansa. Application of Hardy’s multiquadric interpolation to hy-
drodynamics. In Proc. 1986 Simul. Conf., Vol. 4, pages 111–117, 1986.

52



[83] E.J. Kansa. Multiquadrics - a scattered data approximation scheme
with applications to computational fluid dynamics - I. Comput. Math.
Applic., 19(8/9):127–145, 1990.

[84] E.J. Kansa. Multiquadrics - a scattered data approximation scheme
with applications to computational fluid dynamics - II. Comput. Math.
Applic., 19(8/9):147–161, 1990.

[85] E.J. Kansa and Y.C. Hon. Circumventing the ill-conditioning problem
with multiquadric radial basis functions: applications to elliptic partial
differential equations. Comput. Math. Appl., 39(7-8):123–137, 2000.

[86] N. Kojekine, V. Savchenko, D. Berzin, and I. Hagiwara. Computer
graphics applications based on compactly supported radial basis func-
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