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Foreword

This text currently serves two purposes:

• it backs up the lecture on reconstruction of multivariate functions as
given in Göttingen in summer 1996, and

• it serves as a gradually growing reference manual for research of the
group in Göttingen and related places.

It may finally develop into a monograph, but as to now it is rather preliminary
and not intended for general distribution. Suggestions, corrections, addenda,
and any form of criticism are welcome.

R. Schaback Göttingen, June 3, 2003

e-mail: schaback@namu01.gwdg.de

Layout for this test version:

• Logical LATEX labels printed out in slanted font.

• Three-level cumulative numbering of environments and equations.

• The index is just a preliminary and (possibly) unsorted list of keywords.

1 Introduction

(SectIntro) The following is intended to give the basic motivation for what
follows in later chapters. It shows that the reconstruction of multivariate
functions f from certain function spaces F requires dependence of F on the
data. Such data-dependent spaces are provided by conditionally positive
definite functions, and these are in the focus of this text. Their optimality
properties, as proven in later sections, justify this point of view. After
definition of spaces generated by conditionally positive definite functions,
this section introduces the standard algorithms for recovery of functions
from such spaces. Examples, generalizations, proofs, theoretical details, and
implementation problems will be added in later sections.
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1.1 Recovery, Interpolation, and Approximation

In almost all practical applications, a function f is given not as a formula,
but as a bunch of data. These data often take the form of approximate
values f(x1), . . . , f(xM) of f at some scattered locations x1, . . . , xM of the
domain Ω of definition of f . The recovery problem then consists in the
reconstruction of f as a formula from the given data. This reconstruction
can be done in two ways:

• interpolation tries to match the data exactly, taking f from a large
class F of functions that is actually able to meet all of the data, while

• approximation allows f to miss the data somewhat, but selects the
reconstruction function from a smaller class F of functions that will
not in general be able to reconstruct the data exactly.

The selection between interpolation and approximation will depend on the
application, and especially on the choice of function classes F and the neces-
sity of exact reproduction of data.

We shall address both problems here, and there will be some hidden links
discovered between the two approaches. Furthermore, we shall allow a much
wider class of recovery problems in later sections, but the basic motivation
is better shown by the above simplified “Lagrange” setting.

1.2 Input and Output Data

We shall consider reconstruction of d-variate functions f defined on a domain
Ω. In most cases, Ω will be a subset of IRd, but many results will hold on
general sets. Right from the start we keep in mind that d might be large and
that the domain Ω may be all of IRd or something special like a subdomain of
IRd or the d− 1 dimensional sphere, i.e. the surface { x ∈ IRd : ‖x‖2 = 1 }
of the unit ball { x ∈ IRd : ‖x‖2 ≤ 1 }, where ‖.‖2 denotes the usual
Euclidean norm on IRd. In addition, we also may encounter very large sets
of data, and these usually come up in two parts:

• a finite set X = {x1, . . . , xM} of M possibly wildly scattered points in
some domain Ω ⊆ IRd, and

• real numbers f1, . . . , fM that represent approximate values of f at the
given points.
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The reconstruction should supply some function f defined on a domain Ω
that contains all the data locations, and the data are to be reproduced
approximately in the sense

fj ≈ f(xj), 1 ≤ j ≤M.

But there are two other important input data for the recovery process:

• the domain Ω should be prescribed by the user, and

• the reconstruction should be confined to some prescribed class F of
functions in order to avoid unpredictable results.

These will finally fix the set of formulas that are allowed as the output of the
recovery process. Their choice will very much depend on the application and
on additional knowledge of the user. For instance, somebody might want
the resulting function f to be defined on all of IRd, while somebody else is
interested in a much more local reconstruction, e.g. in the convex hull of the
data locations.

Furthermore, there may be different requirements on the smoothness of the
recovered function or on its decay further away from the data. These have
to be incorporated into the choice of F , in addition to further information
the user can provide.

1.3 Restrictions on the Choice of Spaces

There are two good reasons to assume that the class F of functions should
be a linear space:

• If the values fj are multiplied by a fixed scalar factor α, then the new
data should be recovered by the function αf instead of f .

• If data fj and gj at the same locations xj ∈ IRd are recovered by
functions f and g, respectively, then the data fj+gj should be recovered
by the function f + g.

Note that this does not only require the class F to be a linear space: it also
enforces the whole recovery process to consist of linear maps that associate
a function to each data set. Furthermore, the recovery process will have a
nonunique solution and thus be numerically unstable, if there is a function g
in F that vanishes at all data locations in X = {x1, . . . , xM}, because then
all functions of the form αg can be added to a solution f without altering
the data reproduction.
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Definition 1.3.1 (DefNond) If F is a space of functions on a domain Ω,
then a subset X of Ω is called F-nondegenerate, if zero is the only function
from F that vanishes on X.

We see that only the F -nondegenerate subsets X of Ω can be used for stable
reconstruction. It would be nice if any finite set X or at least (if dimF = M)
any set X = {x1, . . . , xM} would be nondegenerate for a given space F .

But in truly multivariate situations this turns out to be impossible. In
fact, if a linear subspace F of dimension M ≥ 2 of a space of multivariate
functions is fixed independent of the set X = {x1, . . . , xM}, there always is a
degenerate set X. This surprising and disappointing observation dates back
to Mairhuber and Curtis (cf. [1](BraessBuch)):

Theorem 1.3.2 (MCTheorem) Let F be an M-dimensional space of con-
tinuous real-valued functions on some domain Ω ⊆ IRd which is truly d-
dimensional in the sense that it contains at least an open subset Ω1 of IRd.
Assume further that any set X = {x1, . . . , xM} ⊆ Ω1 is F-nondegenerate.
Then either M = 1 or d = 1 hold, i.e. either the function space or the
underlying domain are just one-dimensional.

Proof. We can assume Ω = Ω1 without loss of generality. If the continu-
ous functions v1, . . . , vM are a basis of F , then the function D(x1, . . . , xM) =
det (vj(xk)) is a continuous function of its M arguments. Due to our assump-
tion this function can vanish only if two or more of the arguments coincide.
Let us assume M ≥ 2, and let Ω be at least truly 2-dimensional. Then one
can swap the points x1 and x2 by a continuous motion that avoids coincidence
with any of the arguments. Thus there is a continuous transition between
D(x1, x2, x3, . . . , xM) and D(x2, x1, x3, . . . , xM) = −D(x1, x2, x3, . . . , xM)
that keeps D away from zero. This is impossible. 2

1.4 Data-dependent Spaces

(SubSectDDSpaces) The Mairhuber-Curtis theorem 1.3.2 (MCTheorem)
forces us to let the space F depend on the data. But since for given X =
{x1, . . . , xM} there should be a linear recovery map

RX : IRM → F . (f1, . . . , fM) 7→ f,

it is reasonable to let F depend on the data locations X = {x1, . . . , xM}
only, not on the data values f1, . . . , fM . The formulas for the construction of
functions f(x) in F thus must depend on X = {x1, . . . , xM} and generate a
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linear space. The most straightforward way to achieve this is to combine the
arguments x and xj into a single function

Φ : Ω× Ω→ IR

and to view each Φ(x, xj) as a data-dependent function of the variable x.
Superposition of such functions results in a space

(calfdef)

FX,Φ :=


M∑
j=1

αjΦ(x, xj) : αj ∈ IR

 (1.4.1)

that may serve our purposes. It will turn out later that there are strong
arguments to support this definition of a data-dependent space of functions.
Under quite weak and general assumptions it can be proven that there is no
better way to do it. Details of this will be given in 3.1.4 (Necessity), but
we cite the basic features here to support some useful simplifications. If for
some Φ the union of all function spaces FX,Φ for varying sets X is required to
have translation invariance, then the function Φ should be of the special
form

Φ(x, y) = φ(x− y), φ : IRd → IRd.

If we add rotational invariance, we end up with radial basis functions

Φ(x, y) = φ(‖x− y‖2), φ : IR≥0 → IR.

Note that in the latter case there is only a single univariate function required
to generate a large class of spaces of multivariate functions. If we are working
on the unit sphere in IRd and assume rotational invariance, we get zonal
functions

Φ(x, y) = φ(xTy), φ : IR≥0 → IRd,

where xT stands for transposition of the vector x such that Φ(x, y) just is a
univariate function φ(xTy) of the scalar product xTy. Details are provided
in section 3.2.4 (SecIP).

Of course there are other methods to generate data-dependent linear spaces
of functions. The most prominent one is used widely in the theory of finite
elements. There, the data set X = {x1, . . . , xM} is first used to generate a
triangulation of its convex hull, and then one constructs functions on each
subset of the triangulation, which are finally patched together to form smooth
global functions. This approach is very effective if the space dimension d is
small and if the functions to be recovered need not be very smooth. We refer
the reader to the vast literature on this subject, and we proceed without
considering triangulations of domains and patching of functions.
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1.5 Evaluation, Interpolation and Approximation

(subsecEIA) The representation of functions in (1.4.1, calfdef) now serves
as the reconstruction formula, and all one has to do when solving the re-
construction problem is to determine the vector α = (α1, . . . , αM) of the
coefficients of the resulting function with the representation

(falphadef)

fα(x) :=
M∑
j=1

αjΦ(x, xj), x ∈ Ω ⊆ IRd. (1.5.1)

Before we turn to this problem, we note that evaluation of such a function
at large numbers of different locations x ∈ Ω can be quite cumbersome if M
is large. However, the strong dependence on M can be relaxed if the values
Φ(x, xj) vanish whenever x and xj are not near to each other. Examples of
such functions will be given later.

Reconstruction by interpolation on X = {x1, . . . , xM} will now require to
solve the linear system

(EQsys1)

M∑
j=1

αjΦ(xk, xj) = fk, k = 1, . . . ,M (1.5.2)

for α1, . . . , αM . We shall write this in shorthand matrix form as

Aα = f,

but in cases where the dependence on X and Φ is crucial, we add capital
subscripts:

AX,ΦαX,Φ = fX , AX,Φ = (Φ(xk, xj))1≤j,k≤M .

To make the system uniquely solvable, the matrix A must be nonsingular.
Looking at approximation, we shall soon have additional reasons to assume
that AX,Φ should even be positive definite. Thus it is more or less unavoidable
to assume AX,Φ to be positive definite for all X, when the function Φ is fixed.
For these reasons we require the function Φ to satisfy

Definition 1.5.3 (DPD) A real-valued function

Φ : Ω× Ω→ IR
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is a positive definite function on Ω, iff for any choice of finite subsets
X = {x1, . . . , xM} ⊆ Ω of M different points the matrix

AX,Φ = (Φ(xk, xj))1≤j,k≤M

is positive definite.

At first sight it seems to be a miracle that a fixed function Φ should be
sufficient to make all matrices of the above form positive definite, no matter
which points are chosen and no matter how many. It is even more astonishing
that one can often pick radial functions like Φ(x, y) = exp(‖x − y‖2

2) to do
the job, and to work for any space dimension.

Turning to approximation, the space FX,Φ of (1.4.1, calfdef) should depend
on less data than those given to determine the approximation. We simply
assume some other data on some (large) Lebesgue-measurable subset Ω1 ⊆ Ω
to be specified, and approximation should take place in the space L2(Ω1),
for instance, which we assume to contain FX,Φ. This covers discrete and
continuous least-squares fits on the set Ω1 by functions of the form fα from
(1.5.1, falphadef). The normal equations for the approximation are

M∑
j=1

αj(Φ(·, xk),Φ(·, xj))L2(Ω1) = (Φ(·, xk), f(·))L2(Ω1), k = 1, . . . ,M.

Introducing new functions
(Psidef)

Ψ(x, y) := (Φ(·, x),Φ(·, y))L2(Ω1) (1.5.4)

g(y) := (Φ(·, y), f(·))L2(Ω1)

we see that this is exactly an interpolation system of the form

AX,ΨαX,Ψ = gX .

Thus approximation reduces to interpolation by functions from a similar, but
somewhat different function space.

At this point we see how positive definiteness comes in: the above matrix
AX,Ψ is a Gramian with respect to the functions Φ(·, xk) in the inner-product
space L2(Ω1). Thus it is positive definite whenever these functions are
linearly independent in L2(Ω1). But the latter requirement is unavoidable
for stable approximation in L2(Ω1).
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From these preliminary considerations we conclude that positive definite
functions should be investigated further, and we note in passing that (1.5.4,
Psidef) yields a first method to construct such functions Ψ from linear in-
dependent functions Φ(·, xk), 1 ≤ k ≤ M,xk ∈ Ω. We shall consider such
constructions in detail in section 7.1 (SecGCT), but we remark in passing
that the Gaussian

Φ(x, y) := exp(−α‖x− y‖2
2)

is positive definite on IRd for all d and all α > 0. Since the proof requires
tools like Fourier transforms, we defer it to section 7.2.1 (SecPDG).

1.6 Conditionally Positive Definite Functions

Positive definite functions (formerly defined in a slightly different way) have
a long history that is nicely surveyed by Stewart [29](Stewart:76-1). How-
ever, the first cases of radial basis functions used widely and successfully in
applications were

• the thin-plate spline Φ(x, y) = φ(‖x− y‖2) = −‖x− y‖2 log ‖x− y‖2

introduced by Duchon [6](duchon:76-1), [7](duchon:78-1), [8](duchon:79-
1),

• the multiquadric Φ(x, y) = φ(‖x− y‖2) =
√
c2 + ‖x− y‖2

2) and

• the inverse multiquadric Φ(x, y) = φ(‖x − y‖2) =
1√

c2 + ‖x− y‖2
2)

used by the geophysicist Hardy [13](hardy:71-1)

but the first two of these are not positive definite. The corresponding matrices
AX,Φ naturally define quadratic forms

(QFdef)

QX,Φ : (α1, . . . , αM) 7→ αTAX,Φα :=
M∑

j,k=1

αjαkΦ(xj, xk) (1.6.1)

on IRd, where T stands for vector transposition, but these forms are positive
definite only on a proper subspace of IRM . More precisely, for certain positive
values of m the above functions Φ satisfy the following

Definition 1.6.2 (DCPD) A real-valued function

Φ : Ω× Ω→ IR
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is a conditionally positive definite function of order m on Ω ⊆ IRd, iff
for any choice of finite subsets X = {x1, . . . , xM} ⊆ Ω of M different points
the value

αTAX,Φα :=
M∑

j,k=1

αjαkΦ(xj, xk)

of the quadratic form (1.6.1, QFdef) is positive, provided that the vector
α = (α1, . . . , αM) ∈ IRM \ {0} has the additional property

(CPDef)

M∑
j=1

αjp(xj) = 0 (1.6.3)

for all d-variate polynomials p of order (=degree-1) up to m. The linear
space of such polynomials will be denoted by IP d

m, and its dimension is q :=(
m− 1 + d

d

)
.

It is a major problem to prove that multiquadrics are conditionally posi-
tive definite of a fixed order m for all space dimensions d. This was done
(among other things) in Micchelli’s fundamental paper [19](micchelli:86-1)
that boosted the research on radial basis functions.

1.7 Basic Equations for Conditionally Positive Definite
Functions

If Φ is conditionally positive definite of order m on Ω ⊆ IRd, then the
additional condition (1.6.3, CPDef) reduces the M degrees of freedom of
α ∈ IRM by at most q, the dimension of the space IP d

m of polynomials. Thus
it is reasonable to add q new degrees of freedom to the recovery process by
adding IP d

m to the space of admissible functions. Then (1.4.1, calfdef) has to
be replaced by

(calfdef2)

GX,Φ := IP d
m+FX,Φ = IP d

m+


M∑
j=1

αjΦ(x, xj) : αj ∈ IR with (1.6.3, CPDef)

 .
(1.7.1)

Now the M×M system (1.5.2, EQsys1) goes over into the (M+q)× (M+q)
system
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(EQsys2)

M∑
j=1

αjΦ(xk, xj) +
q∑
i=1

βipi(xk) = fk, 1 ≤ k ≤M

M∑
j=1

αjpi(xj) + 0 = 0, 1 ≤ i ≤ q

(1.7.2)

for vectors α = (α1, . . . , αM) ∈ IRM and β = (β1, . . . , βq) ∈ IRq, where the
polynomials p1, . . . , pq are a basis of IP d

m. Introducing a matrix

P := PX := (pi(xj))1≤i≤q,1≤j≤M ,

of values of polynomials, this system reads in matrix form as
(BDef)(

A P
P T 0

)(
α
β

)
=

(
f
0

)
. (1.7.3)

The coefficient matrix of this enlarged linear system will be abbreviated by
B or BX,Φ. The solvability of (1.7.2, EQsys2) is described by

Theorem 1.7.4 (Nonsing1) Let Φ be conditionally positive definite of or-
der m on Ω ⊆ IRd, and let the data set X = {x1, . . . , xM} ⊆ Ω be IP d

m-
nondegenerate. Then the system (1.7.2, EQsys2) is uniquely solvable. Fur-
thermore, there are linear algebra techniques using at most O(Mq2 + M2q)
operations to reduce it to a positive definite (M − q)× (M − q) system.

Proof. Let a pair of vectors α ∈ IRM and β ∈ IRq solve the homogeneous
system with matrix (1.7.3, BDef). Then we have Aα+Pβ = 0 and P Tα = 0.
Multiplying the first equation with αT and inserting the second in transposed
form, we get αTAα + 0 = 0. Now α = 0 follows from conditional positive
definiteness, and we are left with Pβ = 0. This in turn implies β = 0,
because X is IP d

m-nondegenerate. The second assertion will be proven by two
explicit algorithms in 8.1 (Red1) and 8.2 (Red2). 2

2 Working with Basis Functions

This section is intended for readers working on applications. It contains
tables of the currently known conditionally positive definite functions and
provides guidelines for picking the right function Φ from the tables. These
guidelines are based on both numerical experience and theoretical insight.
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However, this chapter will not attempt to prove any of the statements inher-
ent in the guidelines, but rather refer the reader to subsequent sections.

Right after giving the general guidelines, we turn to algorithms. Some
extensions to the basic algorithms are presented together with efficiency
considerations. Special strategies for system reduction, iterative solution,
sparse matrices, and preprocessing techniques for large sets of data points
are included.

A series of examples serves for illustration. Since these examples are quite
convincing in general, they justify the considerable amount of theoretical
background to be developed in the later sections.

2.1 General Practical Considerations

Before picking a suitable function Φ for recovering a function f in an appli-
cation, the user first has to consider the following issues:

• How smooth should f be?

• What is the required behaviour near the boundary of the convex hull
or outside of the data set X = {x1, . . . , xM}?

• Are the data locations evenly or very unevenly distributed?

• Is exact reproduction of the data required?

• Are M and/or the space dimension d so large that efficiency consider-
ations are predominant over reproduction quality questions?

2.1.1 Uncertainty Relation

(GPCUP) When considering the above questions, the user has to keep in
mind that every good thing has its price. This basic fact of real life occurs
here in the form of an Uncertainty Relation:

If you go for good reproduction quality, you have to sacrifice numerical
stability. If you go for good stability, you have to sacrifice reproduction
quality.

This wishy-washy statement will be made precise in 3.4.6 (URT), and there
it turns out that both reproduction quality and numerical instability are
linked to both data density and smoothness of Φ (and, in cases with compact
support, to the size of the support radius of Φ). Furthermore, if large linear
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systems with positive definite coefficient matrices are solved by the conjugate
gradient method, numerical stability is directly linked to efficiency via the
condition of the matrices. This is why for large problems one can replace
“stability” by “efficiency” in the Uncertainty Relation.

If the data density is considered fixed, the Uncertainty Relation suggests that
the user should be very careful about the smoothness of the function Φ. It
should be as low as the application tolerates, and any excessive smoothness
will have negative effects on stability.

But if reproduction quality or stability is fixed, there is a trade-off between
data density and smoothness of Φ. For sparse data one can work with
smooth functions, and for large and dense data sets one has to work with
low smoothness of Φ in order to avoid numerical problems. If working
with compactly supported functions Φ, this is a standard way to escape
the inherent numerical problems with very large and dense data sets. One
can split the data set into subsets of increasing density and use compactly
supported functions with decreasing support radii on these data sets. If
things work out nice, one can expect to work at a fixed stability level, but
with incereasing local resolution. We treat such multilevel techniques in detail
in 2.4 (MLA) but the next paragraph will add some other arguments in favor
of it.

Compactly supported functions offer computational advantages due to spar-
sity of the corresponding matrices. If supports are small, the effect of such
functions will be strictly local, and this has both advantages and disadvan-
tages. The disadvantage is that global effects cannot be nicely recovered, and
thus small supports should be used only in cases where the global behavior
is already recovered by any other method. The usual trick is to

• first apply a global method (possibly using a small but global data set),

• take the residuals (data minus values of the recovery function) and then

• handle the local effects by reconstruction the residuals using compactly
supported functions on the full data set.

This three-stage process is quite common in applications and amounts to
solve for the global trend first and then to model the local effects on a finer
scale. The last two steps can be iterated using smaller and smaller supports,
and this is the multilevel method that we look at in 2.4 (MLA)
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2.1.2 Unevenly Distributed Data

(GPCUDD) The above statements assume a more or less evenly scattered
data set. If there are local clusters of data points or areas without data,
some other aspects come into the game. In fact, for a fixed function Φ the
numerical stability and the reproduction quality are connected to two similar,
but different quantities which roughly coincide for evenly distributed data
sets. The stability is connected to the separation distance

(SDDef)

s := sX :=
1

2
min

1≤j 6=k≤M
‖xj − xk‖2 (2.1.1)

while the reproduction quality on the domain Ω is ruled by a somewhat more
complicated quantity (see (3.5.8, hrhodef)) that can roughly be described for
practical purposes by the fill distance

(DDDef)

h := hX,Ω := sup
x∈Ω

min
1≤j≤M

‖x− xj‖2. (2.1.2)

Separation distance measures the minimal distance that separates any two
data locations, i.e. it is the minimal distance from any point of the data set
to its nearest data point, while fill distance measures the way how the data
fill the domain, i.e. it is the maximal distance from any point of the domain
to its nearest data point. Thus fill distance is never smaller than separation
distance, but hazardous cases have a very small separation distance relative
to the fill distance. We call a data set unevenly distributed if this happens,
and the quotient

δX,Ω :=
hX,Ω
sX
≥ 1

is a good measure for the unevenness of a data distribution X with respect
to a domain Ω.

Now the naive treatment of unevenly distributed data sets will induce “ad-
ditional” numerical instabilities caused by the irregularity of the data dis-
tribution. If these instabilities are severe, some action must be taken. If
caused by a few points that are extremely near to other data locations with
comparable data values, the user can simply throw these “duplicates” out of
the data set and proceed, expecting that the nearby data points are sufficient
for the required reconstruction.

But there are cases where the data show local clusters which themselves
consist of nicely distributed data locations. Then the problem lives on more
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than one density scale, and the obvious technique to treat such cases is by
working in several steps with increasing local resolution. This is another
good reason for the multilevel approach in 2.4 (MLA).

2.2 Current Basis Functions

(SecCBF) Table 1 (TCPDFct) lists some of the currently known radial
functions that are conditionally positive definite of positive order m on IRd.
A more or less complete list will be in the Appendix under 10.1 (SecBF).
Note that these have some polynomial growth towards infinity, and they
always generate non-sparse matrices. They work for any space dimension
d, and they are especially useful for cases where decay towards infinity is a
disadvantage. Thus they should not be applied to residuals but rather to the
original data, and their power lies in good reproduction of the global overall
shape of the function to be reconstructed, especially in areas away from the
data locations.

We now turn to unconditionally positive definite functions defined on IRd.

φ(r) Parameters m
rβ β > 0, β /∈ 2IN m ≥ dβ/2e

rβ log r β > 0, β ∈ 2IN m > β/2
(r2 + c2)β/2 β > 0, β /∈ 2IN m ≥ dβ/2e

Table 1: Conditionally Positive Definite Functions (TCPDFct)

φ(r) Parameters Smoothness Dimension Name/Reference

e−βr
2

β > 0 C∞(IRd) d <∞ Gaussian
(r2 + c2)β/2 β < 0 C∞(IRd) d <∞ inv. Multiquadric
rνKν(r) ν > 0 Cbνc d <∞ Sobolev spline

(1− r)2
+(2 + r) C0 d ≤ 3 Wu [?](wu:94-1)

(1− r)4
+(1 + 4r) C2 d ≤ 3 Wendland [30](wendland:95-1)

Table 2: Unconditionally Positive Definite Functions (TPDFct)

These have decay towards infinity and come in two variations: compactly
supported or not. Due to results given in 7.2.2 (NECSAlld) there are no
compactly supported positive definite functions that work for all space di-
mensions. Thus one has to check the space dimension d when working with
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compactly supported functions. Table 2 (TPDFct) lists some of the cur-
rently known cases and provides information about smoothness and admis-
sible space dimensions for positive definiteness. See 10.1 (SecBF) for further
cases and details.

The decay towards infinity may be an unwanted feature when applied to
raw data, but it is very convenient when applied to residuals. Compact
supports provide sparse matrices, but the adjustment of the support radius
can be hazardous. If chosen too small, the resulting matrices AX,Φ tend to
be nicely diagonal, making the numerical solution very stable and efficient,
but the reproduction quality is disastrous, because one reproduces the data
by extremely narrow and isolated “delta” peaks. On the contrary, a large
support radius very much improves reproduction quality, but at the expense
of matrix fill-in and increasing condition. This is another consequence of the
Uncertainty Relation.

2.3 Computational Complexity of Solving the System

(CompEffort) We now investigate the numerical effort required to solve
the system (1.7.3, BDef). Assuming that q usually is zero or small com-
pared to M , we roughly have a positive definite and symmetric M × M
system to solve. If the condition is reasonable and M is not too large,
Cholesky factorization will do the job at about M3/6 + O(M2) computa-
tional cost. However, this is not acceptable for large M . In particular,
the value of M can be even too large to form the full matrix in storage.
Therefore one has to look for iterative methods and sparse matrix tech-
niques. Some special tricks due to Beatson [3](beatson-newsam:92-1) and
Powell [26](powell:92-1)[25](powell:92-2)[6](PowellEffTPSSystem) are possi-
ble for specific basis functions, but we concentrate here on the solution via
compactly supported functions.

In this case the matrix is sparse and its bandwidth depends on the relative
size δ/h of the support radius δ and the fill distance h. For a fixed compactly
supported positive definite function Φ the effect of an increase of δ yields

• an increase of the bandwidth of the matrix in (1.7.3, BDef) via an
increase of δ/h,

• an increase of the reproduction quality via an increase of δ/h (see 3.4
(SecError)), and

• an increase of its condition via an increase of δ/q (see 3.4.4 (SecCondi-
tion)).
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This is another version of the Uncertainty Relation, and the user has to
fix the support radius δ to be sufficiently large to get good reproduction
quality while keeping it small enough to let the solution of the system be
computationally effective. A general rule of thumb is to work at the limits
of the computational resources, and to switch to multilevel techniques (see
2.4 (MLA)) in cases where the reproduction quality still is inadequate.

If the ratio δ/q is kept bounded, the norm of the inverse (and thus a major
part of the condition) of the matrix in (1.7.3, BDef) is bounded. Solving
the system by conjugate gradients uses only a fixed number of iterations
for fixed precision requirements, if the condition is bounded. Furthermore,
each iteration takes only O(M · B) operations for bandwidth B. Thus the
numerical cost cof solving the system (1.7.3, BDef) an be kept roughly at
O(M), if the user keeps the ratios of h, q, and δ within reasonable bounds.

We finally check the complexity of evaluating (1.5.1, falphadef) at a single
argument x. In general one has to expect O(M), but since one has to
evaluate the function in at least O(M) or many more points, the cost for
evaluation will even be underestimated by O(M2). For large values of M this
cannot be tolerated. Using stencils [26](powell:92-1) and Laurent expansions
[25](powell:92-2) Powell has overcome these difficulities in case of thin-plate
splines. For compactly supported basis functions with maximally B points in
their support (this coincides with the bandwidth of the system (1.7.3, BDef))
one has O(B) operations for each evaluation, which is a significant advantage
if many evaluations have to be made. However, each evaluation then requires
to solve the B-nearest-neighbor problem of computational geometry, because
for each x one has to pick the B data points xj with nonzero Φ(x, xj) in
an effective way. If the data are not too wildly scattered, one can employ
preprocessing techniques of complexity at most O(M) to solve this problem
at O(1) for each x. In general, preprocessing of cost O(M logM) is necessary
to provide a O(logM) complexity of solving the B-nearest-neighbor problem
for each x. Details will be provided in section 9 (SecCGT)

2.4 Multilevel Algorithms

(MLA) The basic idea here is to work at levels indexed by j, where one uses
a basis function Φj that usually will be compactly supported with a support
radius δj. On level j the data is confined to a subset Xj of the full data
set X, and the corresponding fill distance and separation distance will be
denoted by hj and qj, respectively. The function fj to be recovered by some
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other function sj at level j consists of the residuals of the preceding step, i.e.

fj := fj−1 − sj−1, j ≥ 1, f0 := f.

The ratios of the three quantities hj, qj, and δj are kept at reasonable
values that make the computations possible, while the quantities themselves
decrease with increasing j.

The rationale behind this multilevel techniques is to recover the function f
at different levels of resolution, starting from global reconstruction of slowly
varying features from coarse global data and ending up with highly local
reconstruction of fine details from densely distributed data. The numeri-
cal performance of this technique is superior to single-level techniques in
applications with very large data sets (see 2.5 (SecExamples) and [9](floater-
iske:95-1) [10](floater-iske:96-1)), but its theoretical treatment, starting in
[7](NRSW), still is incomplete. The numerical cost can be kept to O(M) by
proper choice of supports and fill distances.

2.5 Numerical Examples

(SecExamples) Here are some first examples of reconstructions of functions
from multivariate scattered data. For easy presentation, we restrict ourselves
to two-dimensional cases and use MATLAB for the computations. The
corresponding MATLAB M-files and MEX-files are in the appendix.

We start with the reconstruction of Franke’s function [11](franke:82-1)
rescaled to Ω = [0, 1] × [0, 1] ⊂ IR2 from data on a grid (i/2n, j/2n), 0 ≤
i, j ≤ 2n such that M = (2n + 1)2. The matrix in (1.7.3, BDef) then has
approximately 4n4 entries, and the computational cost of Cholesky factoriza-
tion is about 4n6/3. If the matrix is non-sparse, only very moderate values
of n can be treated.

The function itself (Figure 1 (FigFranke33)) is nicely reconstructed up to
graphical precision by thin-plate splines φ(r) = r2 log r from information on
M = 81 data points (Figure 2 (FigTPS81Fct33)). The effects of higher
values of M are visualized by plotting residuals (see Figure 3 (FigTPS81Res)
for M = 81, and note the scale on the z-axis for plots of resuduals).

Working on more than M = 225 points becomes very ineffective for non-
sparse cases. Thus we now consider examples with Wendland’s compactly
supported radial basis function φ(r) = (1−r)4

+(4r+1) with support scaled to
radius δ. On M = 81 data points one can still compare with the previous case
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while using a large support radius δ = 2 (Figures 4 (FigWF81Supp2Fct33), 5
(FigWF81Res2)). To handle larger values of M , the support radius has to be
decreased to introduce sparsity. We start with examples having bandwidth
21 on M = 289 and M = 4225 points (Figures 6 (FigWF289Ban21Fct65),
7 (FigWF289Ban21), 8 (FigWF4225Ban21)). Note that the reproduced
function is overlaid by some high-frequency wiggles that arise from the small
support of the radial basis functio used: the approximation is somewhat too
spiky. A look at the residuals supports this, but also implies that the larger
errors occur at the boundary. These take over when going to 4225 data
points, and make the errors in the interior hardly visible. This is the first
hint that the behavior near the boundary needs special treatment.

Now Figures 9 (FigWF289Ban45Fct65), 10 (FigWF4225Ban45)) show resid-
uals computed with matrices of bandwidth 45. The results are better, of
course, but the message is the same.

For even larger values of M we refrain from providing plots of residuals.
Instead, we evaluate the error on a fine grid. Table 3 (TabNonstat) on
page 22 shows the maximum errors for cases with fixed support radius δ

N \ δ 0.03125 0.0625 0.125 0.25 0.5 1 2 4 8
9 * * * * 12.1754 5.4808 5.5436 5.8102 5.9030

25 * * * 10.2176 1.1995 0.8186 0.6902 0.6889 0.7073
81 * * 11.5563 1.1013 0.4668 0.3621 0.3570 0.3584 0.3587

289 * 11.7369 0.8148 0.4606 0.1175 0.0397 0.0241 0.0224 0.0226
1089 11.6653 0.7812 0.4783 0.1158 - - - - -
4225 0.7791 0.4561 - - - - - - -

16641 - - - - - - - - -
66049 - - - - - - - - -

Table 3: Errors for interpolation of Franke’s function, Nonstationary Case
(TabNonstat)

* Errors too large due to extremely small supports used,

- Workspace exhausted or non-sparse matrix.

(nonstationary case), as far as the computations were numerically feasible.
Convergence along columns is clearly visible, but the scope is still severely
limited by computational restrictions.

If the support radius is kept strictly proportional to the fill distance (this
is called the fully stationary case), then the bandwidth B is constant along
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Figure 1: Franke’s function
(FigFranke33)

Figure 2: Reconstruction of Franke’s function from thin-plate splines on
M = 81 points
(FigTPS81Fct33)

Figure 3: Residuals for thin-plate splines on M = 81 points
(FigTPS81Res)

Figure 4: Recovery using Wendland’s C2 function with support radius 2 on
M = 81 points
(FigWF81Supp2Fct33)

Figure 5: Residuals using Wendland’s C2 function with support radius 2 on
M = 81 points
(FigWF81Res2)

Figure 6: Recovery using Wendland’s C2 function with bandwidth 21 on
M = 289 points
(FigWF289Ban21Fct65)

Figure 7: Residuals using Wendland’s C2 function with bandwidth 21 on
M = 289 points
(FigWF289Ban21)

Figure 8: Residuals using Wendland’s C2 function with bandwidth 21 on
M = 4225 points
(FigWF4225Ban21)

Figure 9: Recovery using Wendland’s C2 function with bandwidth 45 on
M = 289 points
(FigWF289Ban45Fct65)

Figure 10: Residuals using Wendland’s C2 function with bandwidth 45 on
M = 4225 points
(FigWF4225Ban45)
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columns in Table 4 (TabStat) on page 24, but there is no convergence along

N \B 1 5 9 13 21 25 29 37 45
9 12.1754 8.1801 5.4801 5.3389 5.3521 5.3770 5.4083 5.4830 5.5436

25 10.2176 4.6070 1.1993 0.9549 0.9209 0.8995 0.8719 0.8400 0.8186
81 11.5563 4.8475 1.1003 0.8840 0.7236 0.6820 0.6316 0.5368 0.4668

289 11.7369 4.5695 0.8148 0.7554 0.7670 0.7190 0.6606 0.5457 0.4606
1089 11.6653 4.4424 0.7812 0.7831 0.7924 0.7432 0.6838 0.5661 0.4783
4225 11.7024 4.4322 0.7791 0.7733 0.7566 0.7099 0.6529 0.5416 0.4561

16641 11.7109 4.4292 0.7786 0.7119 0.7577 0.6994 0.6578 0.5461 -
66049 12.9205 4.4283 - - - - - - -

Table 4: Errors for interpolation of Franke’s function, Stationary Case
(TabStat)

N number of data points

B number of points per support

- Workspace exhausted

columns, while the scope is greatly enlarged. Convergence occurs along lines
with negative slope in this table, but the minimum attainable error still is
quite large. The condition is roughly constant in each column, such that the
overall numerical cost is approximately proportional to M .

We now recalculate the columns of Table 4 (TabStat) by taking successive
residuals as we proceed along each column, working at fixed bandwidth and
fixed condition, thus with O(M) overall computational complexity (see Table
5 (TabMulti) on page 25). This multilevel approach now decreases the error
significantly and seems to have at least a linear convergence along columns.
More information on the numerical behavior of the multilevel approach can
be found in [9](floater-iske:95-1) [10](floater-iske:96-1). Here, we support
the results of Table 5 (TabMulti) by some additional plots of multilevel
interpolants to Franke’s function. Figure 11 (FigWF289Ban21MLFig) shows
the multilevel reconstruction with bandwidth 21 after four levels with 9, 25,
81, and 289 data points. The residuals are in Figure 12 (FigWF289Ban21ML)
and should be compared with Figure 7 (FigWF289Ban21) with the same
bandwidth on 289 points, using a single step.

To visualize the smoothing effect of the multilevel method, we pick a drastic
example by choosing a very small bandwidth of 5. The reader will realize
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N \B 1 5 9 13 21 25 29 37 45
9 12.0412 8.1801 5.4801 5.3389 5.3521 5.3770 5.4048 5.4830 5.5436

25 7.6972 2.5971 0.9328 0.7840 0.7016 0.6943 0.6842 0.6808 0.6i845
81 5.9089 0.9172 0.4223 0.3820 0.3565 0.3571 0.3595 0.3680 0.3735

289 4.4449 0.2927 0.0680 0.0518 0.0352 0.0332 0.0314 0.0303 0.0288
1089 3.3053 0.0867 0.0256 0.0187 0.0120 0.0112 0.0105 0.0098 0.0092
4225 2.4589 0.0320 0.0090 0.0064 0.0039 0.0036 0.0034 0.0031 0.0029

16641 1.7481 0.0118 0.0034 0.0023 0.0013 0.0011 0.0011 0.0009 0.0008
66049 1.3085 0.0053 - - - - - - -

Table 5: Errors for interpolation of Franke’s function, Stationary Case,
Interpolation of residuals
(TabMulti)

N number of data points

B number of points per support

- Workspace exhausted

that this method will be feasible even for gigantic data sets. Figures 13
(FigWF9Ban5MLFig) 14 (FigWF25Ban5MLFig) 15 (FigWF81Ban5MLFig)
16 (FigWF289Ban5MLFig) 17 (FigWF4225Ban5MLFig) show reconstruc-
tion from M = 9, 25, 81, 289, and 4225 points. The extremely small
bandwidth of 5 does not have a serious influence on the quality on a 3 × 3
data set, but the spiky reproduction in the medium range introduces wiggles
that are ironed out by increasing data density.

Of course, one should take larger supports in the intermediate range and
use a bandwidth larger that 5 to produce optimal results, but the above se-
quence is picked to illustrate what happens qualitatively if the computational
restrictions force to work with very small bandwidth. The actual errors can
be read off the second column of Table 5 (TabMulti).

To prove statements about the convergence rate and the condition of such
calculations will be main goal of this text.

3 General Theory

(SecGT) Here we start with the basic theoretical foundations and proceed
top-down. First, we pose the problem of recovery of elements of Hilbert
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Figure 11: Recovery using Wendland’s C2 function with bandwidth 21 on
M = 289 points, multilevel method
(FigWF289Ban21MLFig)

Figure 12: Residuals using Wendland’s C2 function with bandwidth 21 on
M = 289 points, multilevel method
(FigWF289Ban21ML)

Figure 13: Recovery using Wendland’s C2 function with bandwidth 5 on
M = 9 points, multilevel method
(FigWF9Ban5MLFig)

Figure 14: Recovery using Wendland’s C2 function with bandwidth 5 on
M = 25 points, multilevel method
(FigWF25Ban5MLFig)

Figure 15: Recovery using Wendland’s C2 function with bandwidth 5 on
M = 81 points, multilevel method
(FigWF81Ban5MLFig)

Figure 16: Recovery using Wendland’s C2 function with bandwidth 5 on
M = 289 points, multilevel method
(FigWF289Ban5MLFig)

Figure 17: Recovery using Wendland’s C2 function with bandwidth 5 on
M = 4225 points, multilevel method
(FigWF4225Ban5MLFig)
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spaces in a very general sense. It turns out that optimal recovery is nec-
essarily linked to the use of conditionally positive definite functions. Con-
versely, each conditionally positive definite function allows to define a “na-
tive” Hilbert space in which it serves to solve an optimal recovery problem.
We study the error and the condition of the recovery process and prove the
Uncertainty Relation in general. Altogether, this section is intended to con-
tain all theoretical results that can be proven without resort to (Fourier)
transforms and which hold for general domains. This implies that the more
sophisticated results for special cases are found in later sections.

3.1 Optimal Recovery in Hilbert Spaces

3.1.1 Optimal Recovery Problems

(subsecORP) Assume that we want to reconstruct a function f defined on
some domain Ω from M pieces of information concerning f . These may for
instance be function values f(xj), 1 ≤ j ≤ M in case of classical Lagrange
interpolation, or inner products (f, pj)L2 , 1 ≤ j ≤ M for L2 approximation.
In both cases the information consists of the value of a linear functional λj
applied to f , and in the second case the function f is assumed to lie in a
space with an inner product (·, ·) that serves to give a specific representation
λj(f) = (f, pj) to the functionals in question.

To incorporate the second case, we thus assume that there is a space F of
functions and a space L of functionals such that λ(f) is the application of
the functional λ ∈ L to the function f ∈ F . The space F is supposed to
carry an inner product (·, ·)F , and the functionals λ ∈ L are supposed to be
continuous with respect to this inner product, i.e.,

|λ(f)| ≤ ‖λ‖L‖f‖F

for all λ ∈ L, f ∈ F , where the norm of functionals is defined as usual:

‖λ‖L := sup
‖f‖F 6=0

|λ(f)|
‖f‖F

<∞.

We now assume that we want to recover an element f from the space F using
the M real values

(fj)

γj = λj(f), 1 ≤ j ≤M (3.1.1)
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of M linear functionals λ1, . . . , λM that are continuous on F . Furthermore,
we assume the linear functionals λ1, . . . , λM to be linearly independent in L,
which means that the information is not redundant.

Then there will usually be many elements f ∈ F that satisfy the equations
(3.1.1, fj), which may now be viewed as generalized interpolation conditions.
If f solves (3.1.1, fj) and if there is some element v ∈ F that satisfies the
homogeneous conditions

0 = λj(v), 1 ≤ j ≤M,

than all elements fα := f +αv for arbitrary α ∈ IR will solve (3.1.1, fj), too.
These elements can have arbitrarily large norms, if v is not identically zero.
To exclude solutions with extremely large norms one thus asks for elements
f ∗ ∈ F that solve (3.1.1, fj) and minimize the norm ‖ · ‖F under all other
solutions. That is, the element f ∗ solves the optimal recovery problem

(ORPF)

‖f ∗‖F = min
f ∈ F

fj = λj(f)

‖f‖F (3.1.2)

in the space F .

If we pursue this general setting further, we shall finally see that under mild
additional assumptions there is a positive definite function that serves to
solve the optimal recovery problem. But then we have lost the conditionally
positive definite functions of positive order. Thus we try a fresh start that
slightly generalizes the above recovery problem.

Instead of a space F with an inner product, we only assume there is a linear
space G over IR with a positive semidefinite bilinear form

(·, ·)G : G × G → IR.

Then |g|2G = (g, g)G defines a seminorm | · |G on G, and we assume that the
nullspace

P := { g ∈ G : |g|G = 0 }
has a finite dimension q ≥ 0 and is spanned by a basis p1, . . . , pq. As in
(3.1.1, fj) we assume that we want to recover an element g from the space G
using the M real values

(gj)

γj = λj(g), 1 ≤ j ≤M (3.1.3)
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of M linear functionals λ1, . . . , λM . But we would run into problems if we
would simply assume continuity of these functionals with respect to the
seminorm, because this would restrict us to functionals that vanish on P .
Postponing the precise assumptions on the functionals, we can now pose the
generalized optimal recovery problem

(ORP)

|g∗|G = min
g ∈ G

gj = λj(g)

|g|G (3.1.4)

in the space G.

3.1.2 Projection onto the Nullspace

(SecHSP) To discuss the solvability of the optimal recovery problem 3.1.4
(ORP) in a very general way, we need some more information on the space G
and ist finite-dimensional subspace P . It simplifies later arguments to have a
simple way of projecting an element g ∈ G onto an element of P . In standard
applications, this projection will be an interpolation or an approximation by
a low-order polynomial. Such a linear projector ΠP from G onto P can be
defined in many different ways. Here we simply assume that there are q
linear functionals π1, . . . , πq on G that are linearly independent over P , i.e.
the q × q matrix P with entries πk(pj) is nonsingular. Then the projector
can be represented as

(DefPN)

ΠP(g) :=
q∑
j=1

πj(g)pj. (3.1.5)

By a change of basis in either the pj or the πj one can assume that the linear
functionals πj(g) satisfy the system

q∑
j=1

πj(g)πk(pj) = πk(g), 1 ≤ k ≤ q.

This is just another way of saying

πk(ΠP(g)) = πk(g), 1 ≤ k ≤ q, g ∈ G,

and it has the consequence that ΠP(p) = p for all p ∈ P , because of
πj(pk) = δjk.
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Having ΠP at hand, we now form RP(g) := g − ΠP(g) for all g ∈ G. For
subsequent use we note that the bilinear form on G can now be rewritten as

(Rsp)

(f, g)G = (RP(f), RP(g))G, f, g ∈ G. (3.1.6)

The decomposition of an arbitrary element g ∈ G as

g = ΠP(g) +RP(g)

implies that the decomposition
(gdec)

G = P +RP(G) (3.1.7)

is a direct sum, since RP(g) ∈ P implies g = ΠP(g) + RP(g) ∈ P and thus
RP(g) = 0. Furthermore, the bilinear form (·, ·)F now is positive definite on
RP(G).

3.1.3 Hilbert Space Completion

(SecHSC) We now complete the space RP(G) in the usual way to form a
Hilbert space F , taking us back to the setting that we started from, and
where

(·, ·)F := (RP(·), RP(·))G
is the inner product. This completion works via Cauchy sequences modulo
null sequences, and it allows all continuous mappings on RP(G) to be ex-
tended to the completion. See Theorem 10.3.11 (HSCT) for details. We
now define the closure of G as the direct sum of P with the closure F of
RP(G). Then the decomposition (3.1.7, gdec) extends to the closures, and if
we denote the closure of G by G again, we get

(GPF1)

G = P + F . (3.1.8)

Thus we finally see that it makes no difference to start right away with a
space G that allows a decomposition (3.1.7, gdec) such that (3.1.6, Rsp) is a
scalar product on the Hilbert space F := RP(G) that has P as its nullspace.

We finish this section by checking the proper form of admissible functionals
for recovery. If λ is just any functional on G, it defines a functional λ−λΠP =
λRP by
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(lrest)

g 7→ λ(g)− λ(ΠP(g)) = λ(RP(g)), g ∈ G, (3.1.9)

and this functional is a good candidate for being continuous with respect to
the seminorm | · |G, because it vanishes on P . We thus consider all functionals
λ on G such that λ − λΠP is continuous, and we denote the space of these
functionals by G∗. By (3.1.9, lrest), for each λ ∈ G∗ the functional λ−λ◦ΠP
is continuous on the Hilbert space F = RP(G), and by the Riesz theorem
10.3.14 (RieszT) there is an element gλ ∈ G such that the identity

(lrep)

λ(g)− λ(ΠP(g)) = λ(RP(g)) = (g, gλ)G (3.1.10)

holds for all λ ∈ G∗ and all g ∈ G. We shall use this identity in the more
convenient form

λ(g) = λ(ΠP(g)) + (g, gλ)G

and note that gλ is uniquely defined modulo P , while RP(gλ) is unique. The
functionals from (3.1.9, lrest) vanish on P and they form the dual F∗ of F . If
one defines Π∗P(λ) := λ◦ΠP and P∗ = Π∗P(G∗), then there are decompositions

λ = Π∗P(λ) + (·, gλ)G

G∗ = P∗ + F∗

that correspond to those of g ∈ G and G itself.

3.1.4 Solutions of Optimal Recovery Problems

(Necessity) We now can return to the problem (3.1.4, ORP) of optimal
recovery. The given functionals λj are assumed to be in G∗. Then they
satisfy (3.1.10, lrep) and introduce elements gj := gλj ∈ G, 1 ≤ j ≤ M in
the sense

(lrepj)

λj(g)− λj(ΠP(g)) = λj(RP(g)) = (g, gj)G, g ∈ G. (3.1.11)

These elements are not unique, and we could make them unique by defining
gj := RP(gλj), 1 ≤ j ≤ M , but the following results do not require this
uniqueness. We now can characterize the solutions of the recovery problem:

Theorem 3.1.12 (ORT1) Any solution g∗ of the optimal recovery problem
(3.1.4, ORP) with functionals λ1, . . . , λM ∈ G∗ satisfying (3.1.11, lrepj) has
the form
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(grep)

g∗ =
M∑
j=1

αjgj +
q∑
i=1

βipi (3.1.13)

where the coefficients satisfy the linear system
(EQsys3)

M∑
j=1

αj(gk, gj)G +
q∑
i=1

βiλk(pi) = γk, 1 ≤ k ≤M

M∑
j=1

αjλj(pi) + 0 = 0, 1 ≤ i ≤ q.

(3.1.14)

and any solution of the above system solves the optimal recovery problem.

Note how similar (3.1.14, EQsys3) and (1.7.2, EQsys2) are, and note that we
postpone the discussion of the solvability of (3.1.14, EQsys3).

Proof: We start by noting that g∗ is a solution of (3.1.4, ORP) if and only
if it satisfies the variational equation

(charmin)

(g∗, v)G = 0 for all v ∈ G with λj(v) = 0, 1 ≤ j ≤M. (3.1.15)

This follows from Corollary 10.3.7 (BAC) in section 10.3 (SecHSB).

If g∗ ∈ G satisfies (3.1.14, EQsys3) and v ∈ G satisfies the homogeneous
conditions λj(v) = 0, 1 ≤ j ≤M , then

(g∗, v)G =
M∑
j=1

αj(gj, v)G +
q∑
i=1

βi(pi, v)G

=
M∑
j=1

αj (λj(v)− λj(ΠP(v)))

= −
M∑
j=1

αjλj(ΠP(v))

= 0

and g∗ satisfies (3.1.15, charmin) and solves (3.1.4, ORP).

To prove the converse, we note that (3.1.15, charmin) implies the existence
of α1, . . . , αM ∈ IR such that
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(charmin2)

(g∗, v)G =
M∑
j=1

αjλj(v) (3.1.16)

for all v ∈ G. In fact, the linear map v 7→ (g∗, v)G vanishes on the kernel of
the linear map v 7→ (λ1(v), . . . , λM(v))T ∈ IRM with finite-dimensional range
and thus factorizes over the range of this mapping. See the proof of Corollary
10.3.7 (BAC) for this argument. But now (3.1.16, charmin2) implies

(charmin3)

(g∗, v)G =
M∑
j=1

αj (λj(ΠP(v)) + (gj, v)G) (3.1.17)

and specialization to v ∈ P implies the second set of equations in (3.1.14,
EQsys3). Then (3.1.17, charmin3) can be rewritten in the formg∗ − M∑

j=1

αjgj, v


G

= 0 for all v ∈ G

and this implies the representation (3.1.13, grep) of g∗. The interpolation
conditions finally furnish the first set of equations in (3.1.14, EQsys3). 2

The system (3.1.14, EQsys3) looks terrible at first sight, because neither the
functions gj nor their inner products (gj, gk)G are readily available from the
given functionals λj. But we shall see in (3.2.14, gjkrep) that there is a
conditionally positive definite function Φ such that

(gj, gk)G = λxjλ
y
kΦ(x, y)

holds for the elements of the matrix in (3.1.14, EQsys3), making an easy
access to these elements possible, if Φ is explicitly known. In particular, if
λj(f) = f(xj), then

(gj, gk)G = Φ(xj, xk)

as we used in (1.7.2, EQsys2) in a slightly more special situation.

We now look at solvability of the system (3.1.14, EQsys3) in the shorthand
form

(BDef2)(
A P
P T 0

)(
α
β

)
=

(
γ
0

)
(3.1.18)
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generalizing (1.7.3, BDef). If vectors α ∈ IRM and β ∈ IRq satisfy the
homogeneous system, then

Aα + Pβ = 0

P Tα + 0 = 0

imply
αTAα = 0

P Tα = 0.

Since the matrix A is a Gramian for the elements g1, . . . , gM , it is positive
semidefinite and we have

αTAα =

∣∣∣∣∣∣
M∑
j=1

αjgj

∣∣∣∣∣∣
2

P

= 0.

Thus the element
∑M
j=1 αjgj of G must be in P and the linear combination∑M

j=1 αjλj of functionals is zero due to P Tα = 0 and

M∑
j=1

αjλj(v) =
M∑
j=1

αj(λj(ΠP(v)) + (gj, v)G) = 0 +

 M∑
j=1

αjgj, v


G

= 0

for all v ∈ G. But we assumed the linear functionals λ1, . . . , λM to be linearly
independent over G. This implies α = 0 and we are left with Pβ = 0. There
is no way to deduce β = 0 from this in general, and consequently we have to
add injectivity of P to our hypotheses, if we want to assure unique solvability
of (3.1.14, EQsys3). We summarize:

Theorem 3.1.19 (ORT2) There is a unique solution to the optimal recov-
ery problem (3.1.4, ORP) if the M × q matrix P with entries

λj(pi), 1 ≤ j ≤M, 1 ≤ i ≤ q

is injective. This condition means that the only element p ∈ P with vanishing
data λ1(p), . . . , λM(p) must be the zero element. 2

It should be clear by now that we finally want to show how the system (1.7.2,
EQsys2) is a special case of (3.1.14, EQsys3) and how a conditionally positive
definite function Φ can arise in the above Hilbert space setting. We shall take
point evaluation functionals λx(v) := (v−ΠP(v))(x) if the abstract elements
v ∈ G can be interpreted as functions on some domain Ω containing the
points x, and use the elements gx := gλx ∈ G from (3.1.10, lrep) to define a
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generalized conditionally positive definite function with P generalizing IP d
m

by

Φ(x, y) := (gx, gy)G, x, y ∈ Ω.

The details will be specified in Theorem 3.2.17 (CPDNeccT).

Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) show that optimal recovery in
the fairly general sense of (3.1.4, ORP) necessarily leads to solutions of the
special form (3.1.13, grep) and linear systems (3.1.14, EQsys3). This is why
the techniques of section 1.4 (SubSectDDSpaces) are a quite natural and
general way to access recovery problems.

3.1.5 Related Problems

(SecRP) There is an equivalent dual reformulation of the above recovery
problem. Instead of reconstructing some g ∈ G from the information γj =
λj(g), 1 ≤ j ≤M one can ask for a functional λ∗ ∈ G∗ of minimal seminorm
in G∗ that satisfies the equations

λ∗(gj) = γj, 1 ≤ j ≤M

for a set of linearly independent elements g1, . . . , gM ∈ G. For this the dual
bilinear form on functionals in G∗ can be defined as

(DefDualBil)

(λ, µ)G∗ := (gλ, gµ)G = λ(gµ)− λ(ΠP(gµ)) = µ(gλ)− µ(ΠP(gλ)). (3.1.20)

The additional property required for uniqueness now is that the M×q matrix
P with entries

πi(gj), 1 ≤ j ≤M, 1 ≤ i ≤ q

is injective. This condition means that the zero is the only element in the
span of g1, . . . , gM that projects via ΠP to zero in P . We leave details to the
readers as an exercise. There is a full duality if one replaces λj by gj and πi
by pi

Another equivalent optimal recovery problem consists in finding an element
g∗ ∈ G with minimal seminorm |g∗|G such that

(scaleq)

(g∗, gj)G = γj, 1 ≤ j ≤M

ΠP(g∗) = 0,
(3.1.21)
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where we again assume that the functions gj represent linear independent
functionals λj in the sense of (3.1.11, lrepj). The difference is that the data
now are not taking notice of additional functions from P , such that the
second condition of (3.1.21, scaleq) is necessary to remove the nonuniqueness
of g∗ modulo P . Furthermore, one can assume

(picond)

ΠP(gj) = 0, 1 ≤ j ≤M (3.1.22)

without loss of generality.

Theorem 3.1.23 (ORT3) Under the additional assumptions
(spancond)

M∑
j=1

αjgj ∈ P implies αj = 0, 1 ≤ j ≤M (3.1.24)

and (3.1.22, picond), the above optimal recovery problem with conditions
(3.1.21, scaleq) has a unique solution g∗ of the form

(grep2)

g∗ =
M∑
j=1

αjgj (3.1.25)

where the coefficients satisfy the linear system
(EQsys4)

M∑
j=1

αj(gk, gj)G = γk, 1 ≤ k ≤M. (3.1.26)

Proof: The equivalent variational equation here is

(g∗, v)G = 0 for all v ∈ G with ΠP(v) = 0 and (v, gj)G = 0, 1 ≤ j ≤M.

This transforms into

(g∗, v)G = (
M∑
j=1

αjgj, v)G

for all v ∈ G. This is satisfied if (3.1.25, grep2) holds. To prove the converse,
we conclude that the variational equation implies that the difference of both
sides in (3.1.25, grep2) lies in P . But application of ΠP turns the difference
into zero, proving necessity of (3.1.25, grep2).
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To prove nonsingularity of the system (3.1.26, EQsys4) we proceed similarly
as in the proof of Theorem 3.1.19 (ORT2), but use (3.1.24, spancond) instead
of linear independence of the functionals λj. 2

Note that (3.1.24, spancond) is more restrictive than to assume linear in-
dependence of the functionals λj, as required for Theorem 3.1.12 (ORT1).
This is why Theorem 3.1.23 (ORT3) has positive definiteness of the matrix
((gi, gj)G)i,j, while Theorems 3.1.12 (ORT1) and 3.1.19 (ORT2) need the en-
larged matrix. Furthermore, the functionals µj := (·, gj)G that implicitly
arise in Theorem 3.1.23 (ORT3) have the additional property µj(P) = {0},
and this property is not shared by the functionals λj in the previous theorems.
In case of P = {0} there is no difference at all.

We now consider the best approximation problem

(BAP)

inf
λ∈Λ
|µ− λ|G∗ (3.1.27)

for a given functional µ ∈ G∗ by functionals in

(DefL)

Λ := span {λ1, . . . , λM} ⊂ G∗. (3.1.28)

The usual theory of approximation in spaces with inner products or bilinear
forms yields the normal equations

(µ, λj)G∗ =
M∑
k=1

αk(µ)(λk, λj)G∗ =
M∑
k=1

αk(µ)(gk, gj)G

with a coefficient matrix as in (3.1.26, EQsys4), and the optimal value of
(3.1.27, BAP) is given by

(BAPN)

inf
λ∈Λ
|µ− λ|2G∗ = |µ−

M∑
k=1

αk(µ)λk|2G∗

= (µ, µ)G∗ − 2
M∑
k=1

αk(µ)(λk, µ)G∗

+
M∑

j,k=1

αj(µ)αk(µ)(λj, λk)G∗ .

(3.1.29)
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3.1.6 Properties of Optimal Recoveries

Assume that we used the method of section 3.1.4 (Necessity) to recover an
element g ∈ G by some element g∗ that satisfies

(ljg)

λj(g) = λj(g
∗), 1 ≤ j ≤M (3.1.30)

for a set of linearly independent functionals λ1, . . . , λM with representers gj
in the sense of

λj(v) = λj(ΠP(v)) + (v, gj)G, v ∈ G.
Assume further that the sufficient condition for uniqueness holds, as given in
Theorem 3.1.19 (ORT2), and that we normalized the functions gj to satisfy
gj = RPgj or ΠPgj = 0.

Since any element g∗ = p ∈ P satisfies (3.1.15, charmin), we get

Theorem 3.1.31 (PolRepT1) The optimal recovery process reproduces el-
ements of P. 2

Corollary 3.1.32 (PolRepCol) If g∗ is the unique optimal recovery of g,
then ΠP(g − g∗) = 0.

Proof: If p ∈ P is arbitrary, then clearly (g+p)∗ = g∗+p due to uniqueness.
The recovery process thus acts separately on the two parts of G = P+RP(G)
with values in the respective parts of S = P + RP(S). But then (RPg)∗ =
RP(g∗) holds and

RP(g∗) = (RPg)∗ = (g − ΠPg)∗ = g∗ − ΠPg

implies ΠPg
∗ = ΠPg. 2

Turning to orthogonality relations, we have

(gj, g − g∗)G + λjΠP(g − g∗) = 0, 1 ≤ j ≤M

and for each element s from the space
(DefS)

S =


M∑
j=1

αjgj +
q∑

k=1

βkpk :
M∑
j=1

αjλj(P) = {0}

 (3.1.33)

we get the orthogonality
(EqOrtho)

(s, g − g∗)G = 0 (3.1.34)

by summation. But this means that g∗ is a best approximation to g from S:
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Theorem 3.1.35 (ORTBA) The solution g∗ of the optimal recovery prob-
lem (3.1.4, ORP) for data from some element g ∈ G is a best approximation
to g from the space S of (3.1.33, DefS) in the sense

|g − g∗|G = min
s∈S
|g − s|G.

2

We now proceed towards the prototype of an error bound. We use the space
(3.1.28, DefL) of functionals and (3.1.30, ljg) to get λ(g − g∗) = 0 for all
λ ∈ Λ. Now take any µ ∈ G∗ and form

µ(g−g∗) = (µ−λ)(g−g∗) ≤ |(µ−λ)ΠP(g−g∗)|+|(gµ−gλ, g−g∗)G| ≤ |µ−λ|G∗|g−g∗|G,

using Corollary 3.1.32 (PolRepCol).

Theorem 3.1.36 (ORTFA) The solution g∗ of the optimal recovery problem
(3.1.4, ORP) for data from some element g ∈ G satisfies the error bound

(Eq2inf)

|µ(g − g∗)| ≤ inf
λ∈Λ
|µ− λ|G∗ inf

s∈S
|g − s|G (3.1.37)

for any functional µ ∈ G∗. 2

The crucial factor in the error bound (3.1.37, Eq2inf) is the generalized
optimal power function

(GPDef)

P (µ) := PΛ(µ) := inf
λ∈Λ
|µ− λ|G∗ (3.1.38)

with Λ from (3.1.28, DefL). If the functionals λj are “near” to µ, this quantity
should be rather small, and we shall prove specific bounds later in 3.5.8
(hrhodef). This is made possible by the representation for P (µ) that follows
readily from (3.1.27, BAP) and (3.1.29, BAPN), and which will also be useful
in section 3.4.6 (URT).

3.1.7 Remarks

The theory of optimal recovery starts with the early paper of Golomb and
Weinberger [12](golomb-weinberger:59-1), while reproducing kernel Hilbert
spaces are much older (see e.g. the textbook by Meschkowski [4](Meschkowski)).
A milestone was the theory of optimal recovery in the sense of Micchelli,
Rivlin, and Winograd ( [20](micchelli-rivlin:77-1) [21](micchelli-rivlin:78-1)
[22](micchelli-rivlin:84-1) [23](micchelli-et-al:76-1) ), while the current ex-
tension into the direction of information-based complexity is in [4](bojanov-
wozniakowski:92-1).
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3.2 Spaces of Functions

(SecSF) In order to arrive at conditionally positive functions, we now have
to specialize our results on optimal recovery to the case of optimal recovery
of functions.

3.2.1 From Hilbert Spaces to Positive Definite Functions

(SecHSPDF) We now specialize to a Hilbert space F of functions on some
domain Ω that we do not restrict. But since classical functions are objects
that allow the action of specific linear functionals

(deltadef)

δx : g 7→ g(x), g ∈ F , x ∈ Ω (3.2.1)

called point-evaluation functionals, we assume that the above functionals
δx are in F∗ and thus continuous on F . Then one can invoke the Riesz
representation theorem 10.3.14 (RieszT) to get a function gδx ∈ F for each
x ∈ Ω such that

(DRKF)

g(x) = δx(g) = (g, gδx)F (3.2.2)

holds for all g ∈ F , x ∈ Ω. We now define a function

Φ : Ω× Ω→ IR, Φ(x, y) := (gδx , gδy), x, y ∈ Ω

and get

Theorem 3.2.3 (PDFT1) If the point evaluation functionals in a Hilbert
space F of functions on some domain Ω are continuous, then the space has
a reproducing kernel function Φ with the following properties:

1. Φ : Ω× Ω→ IR,

2. Φ(x, ·) = Φ(·, x) ∈ F for all x ∈ Ω,

3. g(x) = (g,Φ(x, ·))F for all g ∈ F , x ∈ Ω.

Proof: By definition and (3.2.2, DRKF),

gδy(x) = (gδy , gδx)F = Φ(y, x)
(gδy , gδx)F = (gδx , gδy)F = Φ(x, y) = Φ(y, x)

for all x, y ∈ Ω, proving all of the assertions. 2

We now compare this with Definition 1.5.3 (DPD) from section 1.5 (subse-
cEIA) on page 10 which we restate here for convenience:
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Definition 3.2.4 A real-valued function

Φ : Ω× Ω→ IR

is a positive definite function on Ω, iff for any choice of finite subsets
X = {x1, . . . , xM} ⊆ Ω of M different points the matrix

AX,Φ = (Φ(xk, xj))1≤j,k≤M

is positive definite.

To test the function Φ from Theorem 3.2.3 (PDFT1) for positive definiteness,
consider a finite subset X = {x1, . . . , xM} ⊆ Ω of M different points and take
an arbitrary vector α ∈ IRM . Then

αTAX,Φα =
M∑

j,k=1

αjαkΦ(xk, xj) =

 M∑
j=1

αjgxj ,
M∑
k=1

αkgxk


F

= ‖
M∑
j=1

αjgxj‖2
F

implies that the matrix AX,Φ always is positive semidefinite, because it is
the Gramian of the functions gxj , 1 ≤ j ≤ M . It is positive definite if and
only if these functions are linearly independent in F . Furthermore, is is easy
to see from (3.2.2, DRKF) that the functions gxj , 1 ≤ j ≤ M are linearly
dependent if and only if the point evaluation functionals δxj , 1 ≤ j ≤M are
linearly dependent in the dual space F . Another simple exercise is to show
equivalence of the linear independence of δxj , 1 ≤ j ≤ M with each of the
following notions:

Definition 3.2.5 (DFSP) A space F of functions on some domain Ω has
the finite separation property, if for all finite subsets X = {x1, . . . , xM} ⊆
Ω of M different points there are M functions g1, . . . , gM ∈ F that separate
the points in X = {x1, . . . , xM}, i.e.

gj(xk) = δjk, 1 ≤ j, k ≤M.

Definition 3.2.6 (DFIP) A space F of functions on some domain Ω has the
finite interpolation property, if for all finite subsets X = {x1, . . . , xM} ⊆
Ω of M different points and all vectors α ∈ IRM there is a function g ∈ F ,
depending on X = {x1, . . . , xM} and α, such that

g(xk) = αk, 1 ≤ k ≤M.

We combine this into a result that proves the setting in 1.5 (subsecEIA) to
occur naturally in fairly general situations:
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Theorem 3.2.7 Let F be a space of real-valued functions on some domain
Ω, and assume

1. F is a Hilbert space over IR,

2. the point evaluation functionals (3.2.1, deltadef) are continuous on F ,

3. F has the finite interpolation or the finite separation property.

Then F is a reproducing kernel Hilbert space, and its kernel function Φ :
Ω× Ω is a positive definite function. 2

3.2.2 Generalization towards Conditionally Positive Definite Func-
tions

(SecGCPDF) We now return to the slightly more general setting of section
3.1.1 (subsecORP). The continuous linear functionals now have to vanish on
the kernel P of the bilinear form (·, ·)G, and this is not a usual property of
point evaluation functionals. But we can resort to the functionals

(deltadef2)

δx,P := δx − δx(ΠP) (3.2.8)

that will vanish on P for all x ∈ Ω. We thus should require the functionals
δx,P from (3.2.8, deltadef2) to be continuous with respect to the bilinear form
(·, ·)G. This is the same as to assume that the point evaluation functionals
δx are in G∗, and then we can use (3.1.10, lrep) to get the generalization

(DRKF2)

δx,P(g) = g(x)− (ΠP(g))(x) = (g, gδx,P )G (3.2.9)

of (3.2.2, DRKF) for all g ∈ G, x ∈ Ω. This is a special form of (3.1.10, lrep)
on page 31 and yields the Taylor-type formula

(Taylor)

g(x) = (ΠP(g))(x) + (g, gδx,P )G (3.2.10)

for all g ∈ G, x ∈ Ω. We now define
(DefPhiGen)

Φ : Ω× Ω→ IR, Φ(x, y) := (gδx,P , gδy,P )G, x, y ∈ Ω (3.2.11)

and get
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Theorem 3.2.12 (CPDFT1) If the functionals (3.2.8, deltadef2) for a
space G of functions on some domain Ω are continuous with respect to the
bilinear form (·, ·)G with finite-dimensional kernel P and projector ΠP : G →
P, then the space has a reproducing kernel function Φ with the following
properties:

1. Φ : Ω× Ω→ IR,

2. Φ(x, ·) = Φ(·, x) ∈ G for all x ∈ Ω,

3. ΠPΦ(x, ·) = ΠPΦ(·, x) = 0 for all x ∈ Ω,

4. Φ(x, y) = (Φ(x, ·),Φ(y, ·))G for all x, y ∈ Ω

5. g(x) = ΠP(g)(x) + (g,Φ(x, ·))G for all g ∈ G, x ∈ Ω.

Proof: We proceed exactly as in Theorem 3.2.3 (PDFT1) and get
(PhiRep2)

Φ(x, y) = (gδx,P , gδy,P )G = gδx,P (y)− (ΠPgδx,P )(y). (3.2.13)

This proves properties 2 and 3, while 1 holds by definition. Putting the above
identity into (3.2.10, Taylor) and (3.2.11, DefPhiGen) yields the fourth and
fifth property. 2

We shall see later that the well-known conditionally positive definite functions
fail to satisfy some of these properties, but there is a fairly standard process
that shows how to get the properties by slight modifications. We shall
comment on this when we consider the construction of native Hilbert spaces
from given conditionally positive definite functions in section 3.3 (SecNS).

The identity (3.1.10, lrep) on page 31 introduced a representing function
gλ ∈ G for each functional λ ∈ G∗. This was used in (3.1.11, lrepj) to derive
the system (3.1.14, EQsys3) for solving the recovery problem. To bring this
into line with the system (1.7.2, EQsys2) on page 14, we use (3.2.13, PhiRep2)
to form

λyΦ(x, y) = λ(gδx,P )− λΠPgδx,P
= (gλ, gδx,P )G = gλ(x)− (ΠPgλ)(x)

and get

gλ = ΠPgλ + λyΦ(·, y)

for all λ ∈ G∗. Since gλ is nonunique modulo functions from P , we even can
omit the first summand and use the above equation as a definition for gλ.
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With a second functional µ ∈ G∗ we can write

µxλyΦ(x, y) = µgλ − µΠPgλ
= µΠPgλ + (µ, λ)G∗ − µΠPgλ
= (µ, λ)G∗ .

This proves
(gjkrep)

(gj, gk)G = (λj, λk)G∗ = λxjλ
y
kΦ(x, y) (3.2.14)

for the elements of the matrix in (3.1.14, EQsys3).

We now want to move towards conditionally positive definite functions, but
we still have to replace polynomials in Definition 1.6.2 (DCPD) on page 12:

Definition 3.2.15 (DCPD2) A real-valued function

Φ : Ω× Ω→ IR

is a conditionally positive definite function with respect to a finite-
dimensional space P of functions on Ω, iff for any choice of finite subsets
X = {x1, . . . , xM} ⊆ Ω of M different points the value

αTAX,Φα :=
M∑

j,k=1

αjαkΦ(xj, xk)

of the quadratic form (1.6.1, QFdef) is positive, provided that the vector
α = (α1, . . . , αM) ∈ IRM \ {0} has the additional property

(CPDef2)

M∑
j=1

αjp(xj) = 0 (3.2.16)

for all p ∈ P.

Theorem 3.2.17 (CPDNeccT) Let G be a space of real-valued functions on
some domain Ω, and assume

1. G has a real-valued symmetric bilinear form (·, ·)G with a finite dimen-
sional kernel P and corresponding projector ΠP ,

2. the point evaluation functionals (3.2.8, deltadef2) are continuous with
respect to the bilinear form,
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3. G has the finite interpolation or the finite separation property.

Then G has a reproducing kernel in the sense of Theorem 3.2.12 (CPDFT1),
and its kernel function Φ : Ω×Ω is a conditionally positive definite function
with respect to P.

Proof: Again, we consider a finite subset X = {x1, . . . , xM} ⊆ Ω of M
different points, but now we take a vector α ∈ IRM with (3.2.16, CPDef2).
Then we can repeat the steps of the proof of Theorem 3.2.3 (PDFT1) to see
that the matrix AX,Φ is positive semidefinite. To prove definiteness, we now
assume that

(inP)

M∑
j=1

αjgδxj,P ∈ P (3.2.18)

holds and have to prove that α is zero. But (3.2.16, CPDef2) and (3.2.18,
inP) imply via (3.2.9, DRKF2) that the point evaluation functionals δxj , 1 ≤
j ≤M are linearly dependent. 2

We see that conditionally positive definite functions arise necessarily when-
ever optimal recovery of functions from a space G with a bilinear form is
attempted. The coefficient matrix of the major part of the linear system has
elements of Gramian form (gj, gk)G, even if the recovery is carried out in more
general (non-function-) spaces. This means that positive (semi-) definiteness
is the natural condition to ask for, and there is no reason to replace it by
nonsingularity.

3.2.3 Sobolev and Beppo-Levi Spaces

We now want to exhibit some special cases where we can start from a space
G with bilinear form and arrive at a conditionally positive definite function.
The most usual bilinear form defined on functions is the L2 inner product

(f, g)L2(Ω) :=
∫
x∈Ω

f(x)g(x)dx

However, point evaluation functionals are not continuous with respect to this
inner product. This is easy to see when looking at the evaluation at zero of
functions of the form fα(x) := exp(−α‖x‖2

2) for large positive α. The L2(IRd)
inner products tend to zero for α→∞, while the value at zero is always one.
Thus there is no positive constant C such that

|λ(fα)| ≤ C‖fα‖L2(IRd)
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holds. As a warm-up for similar calculations occurring in later sections of
the text, let us do the evaluation of the inner product. It suffices to take
β = 2α and calculate the integral∫

x∈Ω
exp(−β‖x‖2

2)dx = vol (Sd−1)
∫ ∞

0
rd−1 exp(−βr2)dr

by going over to polar coordinates and integrating over the scaled unit
sphere Sd−1 ⊂ IRd. Its surface area (or its d − 1-dimensional volume) is
vol (Sd−1) = 2π(d−1)/2/Γ((d − 1)/2) due to (10.4.2, VolS). The rest follows
from substitution and the definition (10.4.1, GammaDef) of the Gamma
function: ∫ ∞

0
rd−1 exp(−βr2)dr = 1

2β

∫ ∞
0

(
t

β
)d/2−1 exp(−t)dt

= 1
2
β−d/2Γ(d/2).

If the reader has difficulties with this, it is time to work through part 10.4
(SecSFT) of the appendix.

To make point evaluation functionals continuous, we require a stronger bi-
linear form than just the L2 inner product. And the above discussion shows
that problems may get worse with increasing space dimension.

The usual trick is to introduce derivatives into the bilinear form. In particu-
lar, take a multiindex α ∈ ZZd

≥0 and define fα as the multivariate derivative
of order α of some function f . For a fixed integer m ≥ 0, assemble all
derivatives with |α| := ‖α‖1 = m into a positive semidefinite bilinear form

(f, g)m :=
∫

Ω

∑
|α|=m

(
m
α

)
fα(x)gα(x)dx

on all functions that are at least in Cm(Ω). Here, we used the multivariate
version of (

m
α

)
:=

m!

α1! . . . , αd!
with |α| = m.

For simply connected domains Ω with a nonzero interior in IRd the nullspace
of the bilinear form will then coincide with the space P = IP d

m of polynomials
of orderm on IRd. To do this, we need that a Cm function on Ω with vanishing
derivatives of order m must necessarily be a polynomial, and this works nicely
in the interior of Ω by application of the multivariate Taylor formula. The
boundary does not count for the integral, and the polynomial is unique, if
we do not have multiple components of the domain.



3.2 Spaces of Functions 47

However, we still have to check the continuity of point-evaluation functionals
δx,P in the sense of (3.2.8, deltadef2) on page 42. The construction of a
suitable projector ΠP to the nullspace P = IPD

m will be given in Lemma
3.5.29 (LemPIG) on page 86 for use in a different context, but it is actually
no big deal. Much more serious is the proof of the fact that m > d/2 is
necessary and sufficient for continuity of the point-evaluation functionals.
This is called the Sobolev inequality, but its proof is delayed to 10.5.3
(SecSob).

If we assume m > d/2 and start with of G = Cm(Ω) in the sense of section
3.2.2 (SecGCPDF), we still have to form the Hilbert space completion and to
derive the functions gδx,P that occur in (3.2.9, DRKF2) and allow to define a
normalized conditionally positive definite function Φ via (3.2.11, DefPhiGen).
To do these things on the full space IRd will later turn out to be much easier
than to use a compact domain Ω. To avoid problems with nonexistence of
‖f‖m, we restrict ourselves to the subspace of Cm(IRd) of functions with
bounded seminorm | · |m. The resulting completed space G with the bilinear
form (·, ·)m is called the Beppo-Levi space of order m on IRd. For readers
without a background in partial differential equations it will probably be a
surprise to hear that the resulting Φ then precisely is the normalization of
the conditionally positive definite radial function φ(r) = r2m−d for d odd and
φ(r) = r2m−d log r for d even.

We give a brief and sloppy “physicist-style” explanation for this and do the
strict proof the other way round: we later construct the space from the
conditionally positive definite function along the lines of the next section.
The informal technique just takes (3.2.9, DRKF2) for granted and rewrites
it in the form

δx,P(g) =
∫

Ω

∑
|α|=m

(
m
α

)
gα(y)gαδx,P (y)dy

= (−1)m
∫

Ω
g(y)

∑
|α|=m

(
m
α

)
g2α
δx,P

(y)dy

if boundary terms are neglected. Thus, in the sense of linear partial differ-
ential equations, the function gδx,P must (up to a sign) be a fundamental
solution corresponding to the differential operator

g 7→ (−1)m
∑
|α|=m

(
m
α

)
g2α
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which (by a simple inductive proof) coincides with the m-th power (−1)m∆m

of the negative Laplacian

∆(f) :=
d∑
j=1

∂2f

∂x2
j

.

This is the hidden reason for the

(
m
α

)
factors in the definition of the

bilinear form. The corresponding fundamental solutions are well-known and
must be radial due to the radial symmetry of the Laplacian. Using the radial
form of the Laplacian, they can be calculated explicitly, and they always are
either of the form rγ or rγ log r. The boundary conditions, when evaluated
properly, force to take the solution with maximal smoothness in zero or with
minimal decay at infinity, and this is the radial function given above.

The case d = 2 requires m > d/2 = 1, and the minimal possible m leads
to m = 2 and φ(r) = r2 log r. The corresponding differential operator is
∆2, describing the surfaces formed by thin plates under external forces or
constraints. This is where thin-plate splines have their name, and the
original approach by Duchon started from the partial differential equation
background of these functions. The other cases are fundamental solutions of
the iterated Laplacian, and since solutions of the plain Laplacian are called
harmonic functions, the radial functions of the form φ(r) = rβ for β /∈ 2ZZ
or φ(r) = rβ log r for β ∈ 2ZZ are called polyharmonic functions. The
transition to non-integer values of β is possible via Fourier transforms and
will be done in general later.

Looking back at the seminorm | · |m induced by the bilinear form (·, ·)m, we
see that the optimal recovery problem attempts to pick a function with least
weighted mean square of all derivatives of order m. This is somewhat like an
energy minimization in case m = 2, but m = 2 is admissible only in spaces
of dimension up to d = 3.

Another even more important space arises when all derivatives up to order
m are summed up to generate a new bilinear form

((f, g))m :=
m∑
j=0

∑
|α|=j

∫
Ω

∂αf

∂xα
∂αg

∂xα
dx

This is positive definite and defines via completion a Hilbert space Wm
2 (Ω)

called Sobolev space of order m. Again, the point evaluation functionals
are continuous only if m > d/2 holds. Using Fourier transforms, the special
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case Ω = IRd can be treated explicitly and yields a positive definite radial
basis function

φ(r) = rm−d/2Km−d/2(r)

up to a factor depending on m and d, where Kν is the Bessel or Macdonald
function defined in (10.4.3, KnuDef). The power of r cancels the singularity of
Km−d/2 at zero exactly, since the asymptotics near zero are given by (10.4.4,
KnuAsyZero).

These radial basis functions look strange, but they arise very naturally,
Since the Bessel functions Kν have exponential decay towards infinity due to
(10.4.5, KnuAsyInf), the translates of φ(‖x‖2) lead to virtually band-limited
interpolation matrices. The evaluation of such functions is easily possible by
calling standard subroutine packages.

If one considers other (equivalent) inner products on Sobolev spaces, the
associated positive definite functions Φ will change. Naively, we would not
expect these changes to be substantial, but surprisingly there is an equivalent
inner product that generates a compactly supported radial basis function.
We shall see this when we check the functions introduced by Wendland in
[30](wendland:95-1).

3.2.4 Invariance Principles

(SecIP) The preceding discussion showed that conditionally positive definite
functions associated to function spaces on IRd often come out to be radial.
We shall now look at this phenomenon in more detail.

Assume that the domain Ω allows a group T of geometric transformations,
and that the bilinear form (·, ·)G of the space G is invariant under transfor-
mations from T . By this we mean the properties

(GInv)

g ◦ T ∈ G
(f ◦ T, g ◦ T )G = (f, g)G

(ΠPg) ◦ T = ΠP(g ◦ T )
(3.2.19)

for all T ∈ T and all f, g ∈ G. Then there are two ways to interpret the
action of a functional δTx for x ∈ Ω and T ∈ T :

δTx(g) = g(Tx) = (ΠPg)(Tx) + (g, gδTx)G
= (g ◦ T )(x) = (ΠP(g ◦ T ))(x) + (g ◦ T, gδx)G

= (ΠPg)(Tx) + (g ◦ T, gδx ◦ T−1 ◦ T )G
= (ΠPg)(Tx) + (g, gδx ◦ T−1)G
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and this proves
gδTx − gδx ◦ T−1 ∈ P

for all g ∈ G, T ∈ T . But this can be inserted into the definition of Φ to get

Φ(Tx, Ty) = (gδTx , gδTy)G = (gδx ◦ T−1, gδy ◦ T−1)G = (gδx , gδy)G = Φ(x, y)

for all x, y ∈ Ω. We thus have

Theorem 3.2.20 (InvT1) Let G and Φ satisfy the assumptions of Theorem
3.2.12 (CPDFT1). If the domain Ω allows a group T of transformations that
leave the bilinear form (·, ·)G on G invariant in the sense of (3.2.19, GInv),
then Φ is invariant under T in the sense

(PhiInv)

Φ(x, y) = Φ(Tx, Ty) (3.2.21)

for all x, y ∈ Ω, T ∈ T . 2

Corollary 3.2.22 If the domain Ω has a fixed element denoted by x0, and
if for all x ∈ Ω there is a transformation Tx ∈ T with Tx(x) = x0, then Φ
takes the form

(Phi1arg)

Φ(x, y) = Φ(Ty(x), x0) (3.2.23)

such that one of the two arguments of Φ is redundant.

We now consider some examples of domains with groups of transformations,
and we always assume the invariance requirements of Theorem 3.2.20 (InvT1)
to be satisfied.

Example 3.2.24 If Ω is itself a group with neutral element 1, then

Φ(x, y) = Φ(y−1x, 1)

for all x, y ∈ Ω.

Example 3.2.25 If Ω = IRd with the group of translations, then
(PhiDiff)

Φ(x, y) = Φ(y − x, 0) = Φ(x− y, 0) (3.2.26)

for all x, y ∈ IRd.
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Example 3.2.27 If Ω = IRd with the group of Euclidean rigid-body trans-
formations (i.e. translations and rotations), then Φ is a radial function

Φ(x, y) = φ(‖y − x‖2)

for all x, y ∈ IRd, where φ : IR≥0 → IR.

Proof: First use the translations of the previous case to write Φ(x, y) =
Φ(x− y, 0), and then rotate x− y to a fixed unit vector in IRd multiplied by
‖x− y‖2. Then we are left with a scalar function of ‖x− y‖2. 2

We note the remarkable fact that conditionally positive definite radial basis
functions always occur in optimal recovery problems on IRd for functions
from spaces that carry a bilinear form with Euclidean invariance.

Example 3.2.28 If Ω = Sd−1 ⊂ IRd is the (d−1)-sphere, i.e. the surface of
the unit ball in IRd, then rotational invariance implies that Φ is zonal, i.e.

Φ(x, y) = φ(xTy)

for all x, y ∈ Sd−1, where φ : [0, 1]→ IR.

In this case the function Φ can be written as a scalar function of the angle
between the two arguments, or the cosine of this angle.

Example 3.2.29 If Ω = IRd and if the group T is ZZd under addition,
then G is a shift-invariant space (see [5](boor-et-al:94-2)), and Φ is fully
determined by its values on IRd

≥0 × IRd
≥0.

In this case, pick T to shift bmin(x, y)c to the origin, using minimum and b·c
coordinatewise.

Example 3.2.30 If Ω = [−π, π]d, if the space G consists of d-variate 2π-
periodic functions, and if the bilinear form is invariant under coordinatewise
real-valued shifts, then we are in a fully periodic setting and Φ(x, y) has the
form (3.2.26, PhiDiff) with a 2π-periodic first argument.

3.2.5 Remarks

The monograph [2](atteia:92-1) also explores the relation between reproduc-
ing kernel Hilbert spaces and associated recovery problems. This section used
parts of [8](RSTranslInv).
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3.3 Native Spaces

(SecNS) The previous sections have shown that each Hilbert space setting of
a recovery problem leads to a specific conditionally positive definite function
acting as a reproducing kernel. We now turn this upside down: for each
conditionally positive definite function Φ there is a Hilbert space with repro-
ducing kernel Φ. This seems to be a quite academic question, but it isn’t.
The main reason is that it is much more easy to construct useful condition-
ally positive definite functions than to find certain Hilbert spaces. Thus it
often happens that one starts with a conditionally positive definite function,
not with a Hilbert space. Furthermore, if a conditionally positive definite
function Φ is constructed without any relation to a Hilbert space, the lat-
ter can be theoretically defined and nicely used to investigate the recovery
quality of Φ..

3.3.1 From Conditionally Positive Definite Functions to Hilbert
Spaces

Now let Φ be a conditionally positive definite function on some domain Ω
with respect to some finite-dimensional space P in the sense of Definition
3.2.15 (DCPD2) on page 44. We have to construct the space G occurring the
preceding sections, and its associated bilinear form with nullspace P . Since
there is no other tool available than the definition of conditionally positive
definite functions, we first have to work with finitely supported functionals

(Deflxma)

λX,M,α : f 7→
M∑
j=1

αjf(xj) (3.3.1)

for arbitrary subsets X = {x1, . . . , xM} ⊂ Ω of M distinct points, where the
coefficient vector α ∈ IRM satisfies (3.2.16, CPDef2), i.e. the above functional
is zero on the space P . We thus define P⊥Ω to be the set containing all of
these functionals. To turn P⊥Ω into a vector space over IR, we use the obvious
multiplication by scalars and define the sum of λX,M,α and λY,N,β as λZ,L,γ
with Z = {z1, . . . , zL} and

Z = X ∪ Y
L = card (Z)
γ` = αj if z` = xj ∈ X \ (X ∩ Y )
γ` = βk if z` = yk ∈ Y \ (X ∩ Y )
γ` = αj + βk if z` = xj = yk ∈ X ∩ Y.
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This definition makes sure that

λX,M,α(f) + λY,N,β(f) = λZ,L,γ(f)

holds for each function f on Ω, and thus the sum satisfies (3.2.16, CPDef2).
The usual laws for vector spaces are satisfied, and we now define a bilinear
form on P⊥Ω by

(DefBil)

(λX,M,α, λY,N,β)Φ :=
M∑
j=1

N∑
k=1

αjβkΦ(xj, yk). (3.3.2)

Since Φ is positive definite with respect to P , we even have positive defi-
niteness of the bilinear form on P⊥Ω , and P⊥Ω is a pre-Hilbert space with the
inner product (·, ·)Φ introduced by Φ. Note that the vector space P⊥Ω is only
dependent on Ω and P , not on Φ itself, but the inner product on P⊥Ω depends
on Φ, as we indicate by our notation.

We now can define the native space G with respect to Φ to consist of all
functions on Ω on which all functionals from P⊥Ω are continuous:

(calgdef)

G :=
{
f : Ω→ IR, |λ(f)| ≤ Cf‖λ‖Φ for all λ ∈ P⊥Ω

}
. (3.3.3)

It is immediately clear that P is a subset of G, but it is neither clear nor true
(in general) that the functions Φ(x, ·) are in G. Furthermore, we still need a
bilinear form on G that has P as its nullspace. To do this, we first define the
map

F : P⊥Ω → G, F (λX,M,α) =
M∑
j=1

αjΦ(xj, ·)

and have to make sure that the image is indeed in G. But this follows from
the very important identity

(lmF)

λY,N,β(F (λX,M,α)) = (λX,M,α, λY,N,β)Φ = λX,M,α(F (λY,N,β)) (3.3.4)

for all λX,M,α, λY,N,β ∈ P⊥Ω . Then we define F0 := F (P⊥Ω ) and assert

Lemma 3.3.5 The sum P + F0 is direct, and the map F is bijective.

Proof: Indeed if F (λ) = p ∈ P, then for all µ ∈ P⊥Ω we have µ(F (λ)) =
µ(p) = (λ, µ)Φ = 0 due to (3.3.4, lmF), proving both assertions at the same
time. 2
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In the above proof we used shorthand notation for functionals in P⊥Ω , and we
shall only return to the full notation if absolutely necessary.

We now can define an inner product on F0 via F , turning F into an isometry
and F0 into a pre-Hilbert space:

(F (λ), F (µ))Φ := (λ, µ)Φ

for all λ, µ ∈ P⊥Ω . We used the same notation for the inner product, since
there will be no confusion between spaces of functions and functionals, re-
spectively.

The next step is to go over to Hilbert space completions of P⊥Ω and F0 in
the sense of Theorem 10.3.11 (HSCT). Then we get a continuous extension
of the isometry F to the completions for free, and we denote this map again
by F . The completion of F0 will be denoted by F , and our final goal is to
prove the validity of a direct sum like

(GPF2)

G = P + F (3.3.6)

to recover (3.1.8, GPF1) on page 30. But this is a hard task since we do not
know that the elements of the completion F of F (P⊥Ω ) are functions on Ω at
all, let alone that they lie in G. However, we know that an abstract element
f of F allows the action of all functionals λX,M,α ∈ P⊥Ω , since (3.3.4, lmF)
yields

(lfgeneral)

λX,M,α(f) = (λX,M,α, F
−1(f))Φ. (3.3.7)

This immediately implies a proper definition of function values for f in case
of P = {0}, since we can define

(lfsimple)

f(x) := λ{x},1,1(f) (3.3.8)

for all x ∈ Ω. This definition is consistent with what we know for functions
in F0, and we could proceed to prove (3.3.6, GPF2). But we need a little
detour for the case P 6= {0}, since the above point evaluation functionals are
not in P⊥Ω . To facilitate this, we again require a projector ΠP onto P as in
section 3.1.2 (SecHSP) on page 29. We could copy this definition, but since
we are in a space of functions now, we want to give a specific construction
that can be expressed in terms of function values.
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To get such a special projector, we shall assume the existence of a subset

Ξ = {ξ1, . . . , ξr} ⊆ Ω

which is nondegenerate with respect to P and assume without loss of gen-
erality that Ξ has a minimal number r of distinct points. Then there is a
standard argument from linear algebra that allows to conclude that r equals
the dimension of P . In fact, the map

p 7→ (p(ξ1), . . . , p(ξr))
T ∈ IRr

is injective and we have q := dim P ≤ r. If p1, . . . , pq form a basis of P , we
can write down the injective r × q matrix

(Prq)

P := (pk(ξj))1≤j≤r, 1≤k≤q (3.3.9)

and pick a subset of rows that generate a submatrix of maximal row rank.
If this were a proper subset, we could reduce r by going over to a subset of
Ξ. Thus P has maximal row rank r. But then we must have q = r, because
there cannot be r linearly independent vectors in a space of dimension q < r.

This shows that we can assume r = q = dimP and nonsingularity of the
q × q matrix P of (3.3.9, Prq). We use this to go over to a Lagrange-type
basis of P with respect to Ξ which we again denote by p1, . . . , pq. Then P is
the identity matrix and we can write every function p ∈ P as

(PRq2)

p(·) =
q∑
j=1

p(ξj)pj(·). (3.3.10)

This now yields the explicit form of a projector ΠP onto P as

ΠP(f)(·) :=
q∑
j=1

f(ξj)pj(·)

for all functions that are at least defined on Ξ. The projector has the
additional property

(f − ΠPf)(Ξ) = {0}

for all functions f that are defined on Ξ, because of δξj ,Ξ = 0, 1 ≤ j ≤ q.
Note that πj(f) = f(ξj) holds if we compare (3.3.10, PRq2) with (3.1.5,
DefPN).
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So the projector is well-defined, but we cannot use it right away, since we first
need nice functionals in P⊥Ω . But such functionals come from the projector
via

(deltagen)

δx,Ξ(f) := f(x)− (ΠP(f))(x) = f(x)−
q∑
j=1

f(ξj)pj(x) (3.3.11)

for all x ∈ Ω and they annihilate P , as required.

The notation δx,P from (3.2.8, deltadef2) is very similar, but there will be
no possible confusion. Similar variations of point evaluation functionals will
occur later. These functionals are useful to prove an intermediate result that
will be of some use later:

Lemma 3.3.12 (SuffPol) If the action of all functionals λ from P⊥Ω is zero
on a given function f from G, then f coincides with a function from P on
Ω.

Proof. : Just take the functionals δx,Ξ for all x ∈ Ω, and look at

0 = δx,Ξ(f) = f(x)− (ΠP(f))(x).

2

We now could generalize (3.3.8, lfsimple) using the above functionals in (3.3.7,
lfgeneral):

(lf2)

f(x) := (δx,Ξ, F
−1(f))Φ, x ∈ Ω, f ∈ F . (3.3.13)

This assigns specific function values to the abstract element of the closure
F of F0. The assignment has the consequence that f(Ξ) = {0} due to
δξj ,Ξ = 0, 1 ≤ j ≤ q, and thus it is rather an assignment of values to f−ΠPf
than to f itself. We thus avoid this complication and define a mapping

RP : F → G

by
(lf3)

(RPf)(x) := (δx,Ξ, F
−1(f))Φ, x ∈ Ω, f ∈ F . (3.3.14)



3.3 Native Spaces 57

We have to show that this maps into G, and for this we have to evaluate

λX,M,α(RP(f)) =
M∑
j=1

αj(δxj ,Ξ, F
−1(f))Φ

=

 M∑
j=1

αjδxj ,Ξ, F
−1(f)


Φ

.

Now the functional in the bilinear form boils down to

M∑
j=1

αjδxj ,Ξ(f) =
M∑
j=1

αj

(
f(xj)−

q∑
k=1

f(ξk)pk(xj)

)

=
M∑
j=1

αjf(xj)−
q∑

k=1

f(ξk)
M∑
j=1

αjpk(xj)

=
M∑
j=1

αjf(xj)− 0

= λX,M,α(f),

and we end up with
(RfDef)

λX,M,α(RP(f)) = (λX,M,α, F
−1(f))Φ (3.3.15)

which proves RP(f) ∈ G.

Theorem 3.3.16 (GPFT2) The spaces P , G, and F of functions on Ω
form a direct sum

G = P +RP(F),

and RP defined by (3.3.14, lf3) is an isometry between F and RP(F) ⊆ G.
The inner products on F and RP(F) introduce a bilinear form

(g, h)G := (R−1
P (g − ΠPg), R−1

P (h− ΠPh))F

with nullspace P on G.

Proof: The intersection of P and RP(F) is zero, because the second space
consists of functions vanishing on Ξ, and the only such function in the first
space is the zero function. Thus the sum is direct, and we have to show that
the sum fills all of G. Before we do that, we take a look at the mapping RP
and check the topology of G. Each function f in G has the well-defined norm

‖f‖G := sup
λ∈P⊥Ω \{0}

|λ(f)|
‖λ‖Φ

,
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and the identity (3.3.15, RfDef) immediately yields

‖RP(f)‖G = ‖F−1(f)‖Φ = ‖f‖Φ

for all f ∈ F . Thus RP is isometric, and RP(F) is the closure of RP(F0) in
G.

We now proceed to show that P+RP(F) fills all of G, and we shall construct
the inverse of RP . Take an arbitrary function f ∈ G and define a functional
Lf on the space P⊥Ω by

Lf (λ) := λ(f), λ ∈ P⊥Ω .

This functional is continuous on P⊥Ω because f is in G, and it has a continuous
extension to the closure of P⊥Ω which is a space isomorphic to the Hilbert
space F . We thus invoke the Riesz represenation theorem 10.3.14 (RieszT)
to get an element S(f) ∈ F with

Lf (λ) = λ(f) = (λ, F−1(S(f)))Φ = (F (λ), S(f))Φ for all λ ∈ P⊥Ω .

Using (3.3.15, RfDef), this turns into

λX,M,α(RPS(f)) = (λX,M,α, F
−1Sf)Φ = λX,M,α(f)

and Lemma 3.3.12 (SuffPol) implies that f−RPS(f) coincides with a function
from P on Ω, and since ΠPRP is the zero mapping, we see that

f = ΠPF +RPSf

holds for all f in G, proving that the direct sum fills all of G. The statement
on the bilinear form is straightforward to prove. 2

To write down a more explicit representation of the functions from G, we
apply F to δx,Ξ and get

F (δx,Ξ)(·) = Φ(x, ·)−
q∑

k=1

Φ(ξk, ·)pk(x) ∈ G.

Then (3.3.14, lf3) and Theorem 3.3.16 (GPFT2) imply the representation
(Taylor2)

f(x) =
q∑
j=1

f(ξj)pj(x) +

Φ(x, ·)−
q∑
j=1

Φ(ξj, ·)pj(x), f(·)


Φ

, (3.3.17)



3.3 Native Spaces 59

but note that the sum in the first argument of the bilinear form cannot easily
be taken out, because Φ(x, ·) may not be in G. The same problem prevents
us from concluding that Φ serves as a reproducing kernel in the strong sense
of Theorem 3.2.12 (CPDFT1). A good candidate, however, is the readily
available function

(EqPsiDef)

Ψ(x, y) := (δx,Ξ, δy,Ξ)Φ

= (F (δx,Ξ), F (δy,Ξ))Φ,
(3.3.18)

because then (3.3.17, Taylor2) yields

F (δy,Ξ)(x) = (ΠPF (δy,Ξ))(x) + (F (δx,Ξ), F (δy,Ξ))Φ ,

= (ΠPF (δy,Ξ))(x) + Ψ(x, y)

such that
Ψ(x, y) = F (δy,Ξ)(x)− (ΠPF (δy,Ξ))(x)

holds, proving that Ψ(·, x) is indeed in G and satisfies ΠP(Ψ(·, y)) = 0 for
all y ∈ Ω. The above identity can now be put into (3.3.17, Taylor2) to get
(3.2.10, Taylor) via

(Taylor4)

f(x) = (ΠPf)(x) + (Ψ(x, ·) + ΠPF (δx,Ξ))(·), f(·))Φ ,

= (ΠPf)(x) + (Ψ(x, ·), f(·))Φ .
(3.3.19)

Thus the function Ψ satisfies all we need for Theorem 3.2.12 (CPDFT1), but
we still have to look at its relation to the original function Φ:

(DefSymmPsi)

Ψ(x, y) = F (δx,Ξ)(y)− (ΠPF (δx,Ξ))(y)

= Φ(x, y)−
q∑
j=1

Φ(ξj, y)pj(x)− (ΠP(Φ(x, ·)−
q∑
j=1

Φ(ξj, ·)pj(x)))(y)

= Φ(x, y)−
q∑
j=1

Φ(ξj, y)pj(x)−
q∑

k=1

Φ(x, ξk)pk(y) +
q∑

j,k=1

Φ(ξk, ξj)pk(x)pj(y).

(3.3.20)
Inspection of this equation and comparison with (3.3.2, DefBil) implies that
Φ and Ψ generate the same bilinear form for the definition of the native
space. Thus Ψ is also conditionally positive definite and the native spaces
generated by Φ and Ψ coincide.

We can now add up the results of this section:
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Theorem 3.3.21 (CPDSuffT) Let Φ be a conditionally positive definite
function on some domain Ω with a finite-dimensional nullspace P of func-
tions on Ω that allows an interpolatory projector

(ΠPf)(·) =
q∑
j=1

f(ξj)pj(·)

where p1, . . . , pq are a basis of P and ξ1, . . . , ξq form a P-nondegenerate subset
Ξ of Ω. Then there is a native space G for Φ, carrying a bilinear form with
nullspace P and having the function Ψ as defined in (3.3.20, DefSymmPsi)
as a reproducing kernel in the sense of Theorem 3.2.17 (CPDNeccT). The
native space is formed by adding a Hilbert space to P. 2

The transition from a conditionally positive definite function Φ to the func-
tion Ψ with (3.3.20, DefSymmPsi) will be called normalization in the se-
quel. We note that the normalized function Ψ can also be defined if the
projector is not interpolatory, but rather of the more general form (3.1.5,
DefPN).

3.3.2 Normalization of conditionally positive definite functions

(PhiNormalization) With the notation of the preceding section it is fairly
easy to describe the reduction of a conditionally positive definite function to
an unconditionally positive definite function. This process coincides with the
normalization by (3.3.20, DefSymmPsi).

Theorem 3.3.22 (RedCPDFT) Let Φ be a conditionally positive definite
function with respect to the nullspace P of the bilinear form on G, and let
the projector ΠP onto P be interpolatory with a minimal P-nondegenerate
set Ξ = {ξ1, . . . , ξq} of points of Ω. Then the normalized function Ψ defined
as in (3.3.20, DefSymmPsi) is unconditionally positive definite on Ω \ Ξ.

Proof: Consider a finite subset X = {x1, . . . , xM} of Ω \Ξ and an arbitrary
coefficient vector α ∈ IRM . Then the functional M∑

j=1

αjδxj ,Ξ

 (f) =
M∑
j=1

αjf(xj)−
M∑
j=1

αj

( q∑
k=1

f(ξk)pk(xj)

)

=
M∑
j=1

αjf(xj)−
q∑

k=1

f(ξk)

 M∑
j=1

αjpk(xj)


necessarily vanishes on P and is in P⊥Ω . Applying the conditional positive
definiteness of Φ for this functional yields positivity of

αTAX,Ψα
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unless the coefficients of the above functional are zero, which implies that α
is zero. 2

By some simple linear algebra techniques the above normalization method
can be shown to be equivalent to the method described in 8.2 (Red2) on
page 109. To see this we give some hints, but suppress details of the full
argument. Starting in section 8.2 (Red2) with a P = IP d

m-nondegenerate
set X = {x1, . . . , xM}, we can renumber the points and assume that Ξ =
{x1 . . . , xq} = {ξ1 . . . , ξq} holds. Furthermore, if we pick the right basis in
IP d
m, the matrix S in (8.2.1, Dec2) has the elements pj(xk), k = q+1, . . . ,M .

But then the matrix occurring in (8.2.4, RedSys3) precisely describes how
to form the elements Ψ(xj, xk) for j, k = q + 1, . . . ,M via the normalization
formula (3.3.20, DefSymmPsi).

The function Ψ vanishes whenever one of its arguments is in Ξ. This is
reflected in the above argument, since Ψ is responsible for reconstruction on
X \ Ξ = {xq+1, . . . , xM}.

3.3.3 Characterization of Native Spaces

(SecCNS) The native space associated to each conditionally positive definite
function Φ is a rather abstract object, and it would be nice to know precisely
which functions are in the space and which are not. This is a nontrivial task,
since the only available information to start with is the conditional positive
definiteness of Φ. Using transforms, we can give some results in section 4.2
(SecCNST), and we leave the general case as an open research problem.

3.3.4 Remarks

The association of a Hilbert space to each conditionally positive defi-
nite function dates back to Madych and Nelson ([14](madych-nelson:83-1)
[15](madych-nelson:88-1) [16](madych-nelson:89-1) [17](madych-nelson:90-1)).

3.3.5 Standardized Notation

(SecSN) The previous sections showed that it does not matter whether we
start our theory from optimal recovery in spaces of functions with a bilinear
form or from any given conditionally positive definite function. The only
difference was that in the first case we constructed a normalized conditionally
positive definite function from the given bilinear form, while in the second
the given conditionally positive definite function Φ may not be normalized,
though its normalization Ψ will generate the same bilinear form as Φ. From
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now on we want to be independent from the starting point, and thus we
collect the following facts that hold in both cases:

1. Φ : Ω × Ω → IR is a conditionally positive definite function on some
domain Ω with respect to some nullspace P of finite dimension q.

2. There is a positive semidefinite bilinear form (·, ·)Φ on a space G of
functions on Ω with nullspace P .

3. The nullspace P has a basis p1, . . . , pq such that with certain linear
functionals π1, . . . , πq on G the projector ΠP from G onto P is well-
defined via

ΠPg =
q∑

k=1

πk(g)pk for all g ∈ G.

4. For each x ∈ Ω the linear functionals

δx,P : g 7→ g(x)− (ΠPg)(x)

are continuous with respect to (·, ·)Φ and the Taylor-type reconstruction
formula

δx,P(g) = (δyx,PΦ(y, ·), g(·))Φ

holds for all g ∈ G, x ∈ Ω.

5. The space G can be decomposed into a direct sum G = P + F such
that F is a Hilbert space with inner product (·, ·)Φ.

6. If functionals λX,M,α are defined as

λX,M,α : f 7→
M∑
j=1

αjf(xj)

for sets X = {x1, . . . , xM} ⊂ Ω and vectors α ∈ IRM for arbitrary
values of M ≥ q, then one can define an inner product

(λX,M,α, λY,N,β)Φ :=
M∑
j=1

N∑
k=1

αjβkΦ(xj, yk)

on all such functionals that vanish on P . The set P⊥Φ of all of these
functionals then is an inner product space.

7. The space G is the largest space of functions on Ω such that all func-
tionals in P⊥Φ are continuous with respect to the norm induced by (·, ·)Φ

on P⊥Φ .
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8. The closure of P⊥Φ under (·, ·)Φ is the dual F∗ of F , and the map
F : F∗ → F provides the Riesz correspondence between functionals
and functions.

9. The action of F is related to Φ via

F (λ)(·) = λyΦ(y, ·)

for all λ ∈ F∗. This is evident in case of λ = λX,M,α ∈ P⊥Φ and has to
be read as a definition of the right-hand side for general λ.

10. The dual G∗ of G consists of functionals that are sums of a linear
functional on P and a linear functional in F∗.

11. For each λ ∈ G∗ we have λ− λΠP ∈ F∗ and

λ(g) = λΠPg + (F (λ− λΠP), g)Φ

= λΠPg + (λ− λΠP , F
−1(g − ΠPg))Φ

= λΠPg + ((λ− λΠP)yΦ(y, ·), g)Φ

for all g ∈ G.

12. The normalization ΨP of Φ is defined via

ΨP(x, y) = (δx,P , δy,P)Φ = δux,Pδ
v
y,PΦ(u, v)

for all x, y ∈ Ω. It has the properties described in Theorem 3.2.12
(CPDFT1).

3.4 Error Bounds in Native Spaces of Functions

(SecError) This section starts our analysis of the error of optimal recovery
processes. We first introduce the power functions of linear recovery processes
in spaces of functions. It turns out that the power functions of optimal
recoveries are pointwise optimal along all other power functions. This is
the major tool for proving error bounds later, but we make a short detour
concerning the stability of the recovery process and prove the Uncertainty
relation in a general form.

3.4.1 Power functions

(SecPF) Assume that we have a quite general process that associates to each
function g in a space G of functions on Ω another function S(g) ∈ G such
that the map S : g 7→ S(g) is linear. The space G should carry at least a
seminorm | · | with nullspace P .
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Definition 3.4.1 The function
(DefPowfct)

P (x) := PS,G(x) := sup
g ∈ G
|g| 6= 0

|(g − S(g))(x)|
|g|

∈ IR ∪ {∞} (3.4.2)

is the power function of S with respect to Φ.

This is nothing else than the norm of the pointwise error functional if the
latter is finite:

P (x) := ‖δx,S‖ with δx,S(g) := g(x)− S(g)(x).

It yields the elementary error bound
(EqgSg)

|g(x)− S(g)(x)| ≤ P (x)|g|, g ∈ G, x ∈ Ω. (3.4.3)

If the projection property S ◦ S = S holds, then one can insert g − S(g)
instead of g into this bound to get

(EqgSg1)

|g(x)− S(g)(x)| ≤ P (x)|g − S(g)|, g ∈ G, x ∈ Ω, (3.4.4)

which often is some improvement over (3.4.3, EqgSg), because we frequently
have |g − S(g)| ≤ |g|.

To make the reader somewhat more familiar with the notion of a power
function, we recall interpolation by univariate polynomials of order at most
n on n distinct points x1 < . . . < xn in [a, b] ⊂ IR. The space G is Cn[a, b]
with seminorm |g|n := ‖g(n)‖[a,b],∞, and the interpolant to g will be denoted
by S(g). The usual error bound

|g(x)− S(g)(x)| ≤ 1

n!
|
n∏
j=1

(x− xj)||g|n

is precisely of the form (3.4.3, EqgSg), and the power function is

P (x) =
1

n!

n∏
j=1

|x− xj|,

since it is well-known that the error bound is exact.

Power functions can be associated to almost every process of approximation
or interpolation, and they enable comparison between different processes S
on the same space G as well as the comparison of the same process S on
different spaces G, respectively.
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3.4.2 Representations of Power Functions

(SecRPF) We now want to specialize the notion of a power function to the
context of optimal recovery in function spaces. We assume the situation
of Theorem 3.1.19 (ORT2) on page 34. That is, there are M linearly in-
dependent functionals λ1, . . . , λM from G∗ and a unique solution g∗ of the
optimal recovery problem (3.1.4, ORP). But we want to compare g∗ with
arbitrary other recoveries of g by linear methods that use the information
λj(g), 1 ≤ j ≤M . These have the form

(GenRec)

Su(g) =
M∑
j=1

λj(g)uj, (3.4.5)

and we assume them to reproduce functions from P . Then for each x ∈ Ω
there is a functional

δx,u,S : g 7→ g(x)− Su(g)(x) = g(x)−
M∑
j=1

λj(g)uj(x)

vanishing on P . The power function with respect to Su is then representable
via

P 2
Su,Φ(x) = |δx,u,S|2Φ.

It is now fairly easy to form

F (δx,u,S)(·) = Φ(x, ·)−
M∑
j=1

λzjΦ(z, ·)uj(x)

and the function
(DefPuxy)

Pu(x, y) := (δx,u,S, δy,u,S)Φ = δy,u,S(Fδx,u,S)

= Φ(x, y)−
M∑
j=1

λzjΦ(z, y)uj(x)

−
M∑
k=1

λzkΦ(, ·, z)uk(y) +
M∑

j,k=1

λzjλ
u
kΦ(z, u)uj(x)uk(y)

(3.4.6)

for all x, y ∈ Ω. The reader will suspect some misuse of notation here, but
the function Pu(x, y) has some nice properties that justify this:

Theorem 3.4.7 (PuT) The function Pu(·, ·) defined in (3.4.6, DefPuxy)
satsfies
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• P 2
u (x) = Pu(x, x) = ‖Pu(x, ·)‖2

Φ for all x ∈ Ω,

• Pu(x, y) ≤ Pu(x)Pu(y) for all x, y ∈ Ω,

• Pu(x, ·)/Pu(·) attains its maximum Pu(x) in Ω at x,

• if X = {x1, . . . , xM} = Ξ = {ξ1, . . . , ξq} is P-nondegenerate and
minimal, then Pu coincides with the normalization of Φ with respect
to Ξ,

• Pu is another conditionally positive definite function that generates the
same native space as Φ.

Proof: The property P 2
u (x) = Pu(x, x) follows from the definitions of both

functions, and

‖Pu(x, ·)‖Φ = ‖F (δx,u,S)‖Φ = ‖δx,u,S‖Φ

implies ‖Pu(x, ·)‖Φ = Pu(x). The next assertion is a consequence of the
Cauchy-Schwarz inequality applied to the definition of Pu(x, y), and together
with the first it yields the third. The proof of the final property listed above
is the same as for the normalization. 2

The merit of (3.4.6, DefPuxy) is that it allows to write down the power
function in explicit form and under quite general circumstances. This is of
paramount importance for deriving error bounds in subsequent sections, and
the basic feature is the optimality principle described in the next section.

3.4.3 Optimality of Power Functions of Optimal Recoveries

Equation (3.4.6, DefPuxy) defines Pu(x, x) = P 2
u (x) for fixed x as a quadratic

form of the M real variables uj(x), 1 ≤ j ≤ M . We now want to minimize
this quadratic form with respect to these variables, but we have to consider
the restrictions

(PolRepEq)

δx,u,S(pi) = pi(x)−
M∑
j=1

λj(pi)uj(x) = 0, 1 ≤ i ≤ q (3.4.8)

imposed by reproduction of P . Since P 2
u (x) is nonnegative, the minimization

must have a solution, and this solution can be characterized by the usual nec-
essary conditions for quadratic optimization under linear constraints. There
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must be Lagrange multipliers β1(x), . . . , βq(x) such that the solution u∗j(x)
of the restricted optimization is a minimum of the unrestricted function

P 2
u (x) +

q∑
i=1

βi(x)

pi(x)−
M∑
j=1

λj(pi)uj(x)

 = 0

of u1(x), . . . , uM(x). Taking the derivative with respect to uk(x), we get

0 = −2λzkΦ(z, x) + 2
M∑
j=1

λzjλ
u
kΦ(z, u)u∗j(x)−

q∑
i=1

βi(x)λk(pi).

We can rewrite this together with (3.4.8, PolRepEq) to get the system

M∑
j=1

λzjλ
u
kΦ(z, u)u∗j(x) +

q∑
i=1

−βi(x)

2
λk(pi) = λzkΦ(z, x), 1 ≤ k ≤M

M∑
j=1

λj(pi)u
∗
j(x) + 0 = pi(x), 1 ≤ i ≤ q

The coefficient matrix of this system is the same as in (3.1.14, EQsys3) on
page 32, if we use (3.2.14, gjkrep) on page 44. Thus the solution is in the
span of the right-hand side, proving that u∗j(x) ∈ S, 1 ≤ j ≤M, as functions
of x, but note that the necessary restriction on the βi(·) of (3.1.33, DefS) is
not satisfied. If we apply λxk to these equations, we see that the conditions

λxk(uj(x)) = δjk, 1 ≤ j, k ≤M

of interpolation are satsfied together with

λxk(βi(x)) = 0, 1 ≤ k ≤M, 1 ≤ i ≤ q.

Thus we have

Theorem 3.4.9 (OPFT) The power function Pu∗(x) of the optimal recovery
problem (3.1.4, ORP) is optimal with respect to u under all power functions
Pu(x) of recoveries of the form (3.4.5, GenRec) that reproduce P. 2

This is in line with the optimality of the generalized optimal power function
PΛ(µ) of (3.1.38, GPDef) on page 39. Note that there we used optimal
recovery right from the start, but allowed a general functional µ instead of
a point evaluation functional δx, while in this section we allowed general
recoveries, but restricted ourselves to the special functional δx. The explicit
correspondence is

PΛ(δx) = Pu∗(x)

between these two versions of optimal power functions.
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3.4.4 Condition

(SecCondition) We now look at the stability of solutions of the systems
(1.7.2, EQsys2) and (3.1.14, EQsys3) written in matrix form as

(BDef3)(
A P
P T 0

)(
α
β

)
=

(
f
0

)
. (3.4.10)

which is exactly (1.7.3, BDef) or (3.1.18, BDef2), but repeated here for
convenience. Introducing perturbations of the solution and the right-hand
side we get the system(

A P
P T 0

)(
α + ∆α
β + ∆β

)
=

(
f + ∆f

0

)

and can subtract (3.4.10, BDef3) to get(
A P
P T 0

)(
∆α
∆β

)
=

(
∆f
0

)
.

This implies
(DAD)

(∆α)TA(∆α) = (∆α)T∆f. (3.4.11)

Since we have P T (∆α) = 0, we know that the above quadratic form is positive
definite. Thus there are positive real eigenvalues σ and Σ of the matrix A
such that

0 < σ := inf
αTAα

αTα
≤ sup

αTAα

αTα
=: Σ <∞,

where the sup and inf are extended over all α ∈ IRM which are nonzero but
satisfy P Tα = 0. The condition number κ(A) of A in the Euclidean norm
then is the quotient κ(A) = Σ/σ, and it appears in the bound

‖∆α‖2

‖α‖2

≤ κ(A)
‖∆f‖2

‖f‖2

that follows from (3.4.11, DAD)and the corresponding equation

αTAα = αTf

for the unperturbed quantities. This bound holds for the relative error, while
the absolute error is governed by
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(Stab)

‖∆α‖2 ≤
1

σ
‖∆f‖2. (3.4.12)

Numerical experiments show that σ can indeed be extremely small, while Σ
does not grow too wildly, at least not as wildly as 1/σ. Later theoretical
results will support these statements, and thus the study of σ or some lower
bounds for it will be of great importance for any assessment of the numerical
stability of systems like (3.4.10, BDef3).

3.4.5 Remarks

The technique for proving error bounds via power functions goes at least
back to Golomb and Weinberger [12](golomb-weinberger:59-1) but probably
further back to Peano, since the error evaluation of linear functionals by
bounding their Peano kernels is very similar. The pointwise optimality
principle of Theorem 3.4.9 (OPFT) was used by various authors and possibly
dates back to Duchon [6](duchon:76-1).

3.4.6 Uncertainty Relation

(URT) It would be very desirable to have recovery methods with small errors
and good stability. However, these two goals cannot be met at the same time,
since there is a connection between them that implies bad stability whenever
the a-priori error bound is very small.

Let us look at this connection in a fairly general way. If we try optimal recov-
ery of a function g ∈ G from data λj(g), 1 ≤ j ≤M in the setting of section
3.1.1 (subsecORP) and bound the error by Theorem 3.1.36 (ORTFA) on page
39, then we have to study the generalized optimal power function P (µ) of
(3.1.38, GPDef), whose square has the representation (3.1.29, BAPN). But
this quantity can be written as a value of the quadratic form associated to
the matrix

Aµ,Λ =


(µ, µ)Φ (µ, λ1)Φ . . . (µ, λM)Φ

(λ1, µ)Φ (λ1, λ1)Φ . . . (λ1, λM)Φ
...

...
...

(λM , µ)Φ (λM , λ1)Φ . . . (λM , λM)Φ


with the vector (1,−α1(µ), . . . ,−αM(µ))T ∈ IRM+1. This yields a lower
bound
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(UR1)

P 2(µ) ≥ σ(Aµ,Λ)
(
1 + ‖α(µ)‖2

2

)
≥ σ(Aµ,Λ) (3.4.13)

for the power function in terms of the smallest eigenvalue of the matrix.
This relates the error analysis to the stability analysis and provides the
background for various cases of the Uncertainty Relation. Furthermore, it
sets the direction for further progress: we need upper bounds for the power
function P and positive lower bounds for the smallest eigenvalue σ. But we
should be aware that the two sides of (3.4.13, UR1) behave differently as
functions of Λ: the right-hand side will vanish, but not the left-hand side, if
two functionals from Λ come too close to each other.

3.4.7 The Lagrange Case

We now specialize to the setting of Theorem 3.4.9 (OPFT) on page 67 with
X = {x1, . . . , xM} ⊂ IRd and Λ = {δx1 , . . . , δxM}. Then we have the matrix

Ax,X =


Φ(x, x) Φ(x, x1) . . . Φ(x, xM)
Φ(x1, x) Φ(x1, x1) . . . Φ(x1, xM)

...
...

...
Φ(xM , x) Φ(xM , x1) . . . Φ(xM , xM)


and the vector (1,−u∗1(x), . . . ,−u∗M(x))T ∈ IRM+1 and get the special form

(UR2)

P 2
u∗(x) = P 2

Λ(δx) ≥ σ(Ax,X)

1 +
M∑
j=1

|u∗j(x)|2
 ≥ σ(Ax,X) (3.4.14)

of (3.4.13, UR1). Note that both sides are continuous functions of x and X
(or Λ standing for X) that vanish whenever x tends to points in X.

We now can give some hints to the results that follow in later sections. The
Uncertainty Relation in the form (3.4.14, UR2) suggests to bound P 2 from
above and σ from below, in order to have both upper bounds on the attainable
error and on the numerical stability, measured by 1/σ due to (3.4.12, Stab).
We shall see in 3.5 (SecUBOPF) that upper bounds for P 2 take the form

(FBound)

P 2
u∗(x) ≤ F (hX,Ω) for all x ∈ Ω (3.4.15)

where F is a monotonic function of the fill distance hX,Ω defined in (2.1.2,
DDDef) on page 17. On the other hand, the lower bounds for σ in 5.4
(SecLBE) will be of the form
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(GBound)

σ(AX) ≥ G(sX) for all X = {x1, . . . , xM} ⊂ Ω (3.4.16)

with the separation distance sX defined in (2.1.1, SDDef). For gridded data
on εZZd ∩ Ω we can roughly expect hX,Ω = sX

√
d, and then the Uncertainty

Relation necessarily implies

(UR3)

F (t
√
d) ≥ G(t) (3.4.17)

for all t ≥ 0. This allows to check the quality of the bounds (3.4.15, FBound)
and (3.4.16, GBound), since the lowest possible bounds F and the largest
possible bounds G must necessarily satisfy (3.4.17, UR3) and are optimal,
if they turn (3.4.17, UR3) into an equality. This opens the race for optimal
bounds of the form (3.4.15, FBound) and (3.4.16, GBound), and this text
will describe the current state-of-the-art.

3.4.8 Remarks

The Uncertainty Relation seems to occur first in [28](schaback:95-1).

3.5 Upper Bounds for the Optimal Power Function

(SecUBOPF) Here we proceed to prove upper bounds of the form (3.4.15,
FBound) for the optimal power function of optimal recovery. This approach
uses results from classical approximation theory and does not require Fourier
transforms. Another proof technique, using transforms, will follow in section
4.4 (SecEBTrans).

3.5.1 Assumptions and First Results

We specialize here to the case of multivariate Lagrange interpolation by
conditionally positive definite functions Φ : Ω × Ω → IR of order m on
some domain Ω that can be embedded into IRd. The data locations are
supposed to form a IP d

m-nondegenerate set X = {x1, . . . , xM} ⊂ Ω, and we
use functions uj on Ω with (3.4.5, GenRec) that reproduce IP d

m.

The power function with respect to these data and the functions uj takes the
special form
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(DefPuxyLag)

Pu(x)2 := Φ(x, x)− 2
M∑
j=1

Φ(x, xj)uj(x)

+
M∑

j,k=1

Φ(xj, xk)uj(x)uk(x)

(3.5.1)

from (3.4.6, DefPuxy). Note that we allow quite arbitrary uj here in view of
Theorem 3.4.9 (OPFT). If optimal recovery leads to Lagrange basis functions
u∗j , 1 ≤ j ≤M , then

Pu∗(x) ≤ Pu(x)

holds for all x ∈ Ω, yielding a pointwise upper bound for the optimal power
function.

To start with, we fix a polynomial order ` ≥ m and a point x ∈ Ω. Around
x we shall approximate Φ by a polynomial ϕ in the following sense:

Assumption 3.5.2 (FBAss1) For each x ∈ Ω and a specific choice of a
polynomial order ` there are positive constants ρ, h0, and C1 and a polynomial
ϕ : IRd× IRd → IR of order not exceeding ` in each d-variate variable, such
that

(PhiApp)

‖Φ(x+ u, x+ v)− ϕ(u, v)‖∞ ≤ C1h
ρ (3.5.3)

for all h ∈ [0, h0] and all u, v ∈ [0, h]d.

We shall vary x and ` later, and then all of the above quantities will be studied
as functions of x and `. Equation (3.5.3, PhiApp) may be viewed as resulting
from a Taylor expansion around (x, x) or by an L∞ approximation process.
It is no drawback to assume symmetry of ϕ in the sense ϕ(x, y) = ϕ(y, x),
because the arithmetic mean of these two polynomials will do the job.

We now define a function Q2
u that serves as a polynomial approximation to

P 2
u near x, but which will turn out to be zero later:

(DefQuxyLag)

Qu(x)2 := ϕ(0, 0)− 2
M∑
j=1

ϕ(0, xj − x)uj(x)

+
M∑

j,k=1

ϕ(xj − x, xk − x)uj(x)uk(x).

(3.5.4)
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Now it is time to specify our choice of uj, 1 ≤ j ≤ M via local polynomial
reproduction of order ` near x. Since the dependence on x and h is crucial
here, we stick to an explicit notation:

Assumption 3.5.5 (FBAss2) For some x ∈ Ω and some h ∈ [0, h0] there
is a subset Jx(h) of {1, . . . ,M}, positive constants C2(x, h), C3(x, h), and a
choice of M real numbers uh1(x), . . . , uhM(x) such that

(uDefJx)

Jx(h) ⊆ { j : 1 ≤ j ≤M, ‖x− xj‖∞ ≤ C2(x, h)h}, (3.5.6)

(uDef1)

uhj (x) = 0 for all j /∈ Jx(h), (3.5.7)

(uDef2)

p(x) =
∑

j∈Jx(h)

uhj (x)p(xj) for all p ∈ IP d
` , (3.5.8)

(uDef3)

1 +
∑

j∈Jx(h)

|uhj (x)| ≤ C3(x, h). (3.5.9)

The first three items specify the local polynomial reproduction, while the
last defines C3 to be the corresponding Lebesgue constant. We apply (3.5.8,
uDef2) to ϕ(0, y − x) as a function of y to get

ϕ(0, x− x) = ϕ(0, 0) =
∑

j∈Jx(h)

uhj (x)ϕ(0, xj − x)

to prove that Qu is identically zero:

Qu(x)2 = ϕ(0, 0)− 2ϕ(0, 0) +
M∑
j=1

ϕ(xj − x, 0)uj(x)

= 0.

We now bound the optimal power function by
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(FundBound)

P 2
u∗(x) ≤ P 2

u (x)

= P 2
u (x)−Q2

u(x)

= Φ(x, x)− ϕ(0, 0)

−2
∑

j∈Jx(h)

uhj (x) (Φ(x, xj)− ϕ(0, xj − x))

+
∑

j,k∈Jx(h)

uhj (x)uhk(x) (Φ(xj, xk)− ϕ(xj − x, xk − x))

≤

1 +
∑

j∈Jx(h)

|uhj (x)|

2

C1(x)(C2(x, h)h)ρ

≤ C3(x, h)2C1(x)Cρ
2 (x, h)hρ

(3.5.10)

for all h with C2(x, h)h ≤ h0, where we have to keep in mind that everything
still depends on `. Nevertheless (3.5.10, FundBound) is the fundamental
error bound for optimal power functions, and it can be applied in a large
number of cases. We summarize:

Theorem 3.5.11 (FundBoundT) Under the assumptions 3.5.2 (FBAss1)
and 3.5.5 (FBAss2) the optimal power function has a local bound of order ρ/2
in x with respect to h → 0, if the constants C2(x, h), C3(x, h) are bounded
for h→ 0. 2

The applications of Theorem 3.5.11 (FundBoundT) come in two variations:

• To prove a fixed error order ρ, one fixes an appropriate ` and uses
compactness arguments to bound all relevant “constants” with respect
to x and h.

• To prove very strong non-polynomial error bounds like e−c/h
2

for fixed-
scale Gaussians, one has to let ` tend to ∞ and study the variation of
the “constants” with `. This is a much harder task.

The two assumptions 3.5.2 (FBAss1) and 3.5.5 (FBAss2) require two different
kinds of results to be proven in the following sections:

• an error bound for local polynomial approximation of Φ,

• and bounds on the Lebesgue constant for local polynomial interpolation
in Ω.
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3.5.2 Approximation Error in the Radial Case

(SecAERC) Here we consider the special situation of d-variate radial func-
tions Φ(x, y) = φ(‖x − y‖2), and we want to check Assumption 3.5.2
(FBAss1). The crucial term in (3.5.3, PhiApp) takes the form Φ(x + u, x +
v) = φ(‖u−v‖2) and usually will not be nicely expandable into a polynomial
in u and v. Fortunately, it is independent of x, since we are in a translation-
invariant situation, and we only need an approximation to φ near zero. More
precisely, we approximate φ(r) by a polynomial pn ∈ IP 1

n in r2 on the domain
[0, h] for small h > 0 and define the error as

(EDef1)

En(φ, h) := inf
p∈IP 1

n

‖φ(r)− p(r2)‖∞,[0,h]

= inf
p∈IP 1

n

‖φ(
√
r)− p(r)‖∞,[0,h2].

(3.5.12)

This error can be bounded by univariate Jackson type theorems from classical
approximation theory. Less sophisticated bounds simply take p as the Taylor
expansion of φ(

√
·) in zero. With ` = 2n − 1 and h replaced by 2

√
dh one

can put the result into Assumption 3.5.2 (FBAss1).

Let us evaluate a few cases by standard techniques and cite the stronger
Jackson results from the literature later.

Example 3.5.13 (AEPHS) In the polyharmonic spline case φ(r) = rβ with
β ∈ IR>0\2IN we can simply rescale the approximation problem to the interval
[0, 1]. That is,

En(rβ, h) = inf
p∈IP 1

n

‖rβ/2 − p(r)‖∞,[0,h2]

= inf
p∈IP 1

n

‖(h2s)β/2 − p(h2s)‖∞,[0,1]

= hβ inf
p∈IP 1

n

‖sβ/2 − h−βp(h2s)‖∞,[0,1]

= hβEn(rβ, 1).

This yields the exact dependence on h and leaves the dependence on β to a
classical Jackson result on [0, 1]. We get ρ = β, and this is independent
of ` = 2n − 1, provided that ` = 2n − 1 ≥ m ≥ dβ/2e holds, since
we have to exceed the order m of conditional positive definiteness. The
most important cases β = 1 and β = 3 have the bounds E1(r, 1) = 1/2
and E2(r3, 1) = 2/27, and these are available by direct analysis, using the
Alternation Theorem of linear univariate L∞ approximation. For this, see
any textbook on Approximation Theory, e.g.: the classical books by Cheney
[2](cheney:??-1) and Meinardus [3](meinardus:??-1).
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Example 3.5.14 (AETPS) Now consider the classsical thin-plate spline
φ(r) = rβ log r with β ∈ 2IN and order m > β/2 of conditional positive
definiteness. We proceed along the same lines and need ` = 2n − 1 ≥ m >
β/2. This implies β/2 ≤ n− 1, which is useful to get rid of the log term in

En(rβ log r, h) = inf
p∈IP 1

n

‖1

2
rβ/2 log r − p(r)‖∞,[0,h2]

= inf
p∈IP 1

n

‖1

2
(h2s)β/2 log(h2s)− p(h2s)‖∞,[0,1]

= inf
p∈IP 1

n

‖1

2
(h2s)β/2(log(h2) + log s)− p(h2s)‖∞,[0,1]

= inf
p∈IP 1

n

‖1

2
(h2s)β/2 log s− p(h2s)‖∞,[0,1]

= 1
2
hβ inf

p∈IP 1
n

‖sβ/2 log s− h−βp(h2s)‖∞,[0,1]

= hβEn(rβ log r, 1).

The case β = 2 has E2(r2 log r, 1) = e−1.

Example 3.5.15 (AEWF) Here we treat Wendland’s [30](wendland:95-1)
function φ(r) = (1 − r)4

+(1 + 4r) which is positive definite on IRd for d ≤ 3
and in C2(IRd) if r = ‖x‖2 for x ∈ IRd. But our approach will be applicable
to the whole class of piecewise polynomial functions of the form

φ(r) =

{
u(r2) + r2n−1v(r) r ∈ [0, 1]

0 else

}
,

where we pick a maximal n such that u lies in IP 1
n and v is an arbitrary

univariate polynomial with v(0) 6= 0. This means that u covers the first
terms of even degree, while r2n−1 is the first term of odd degree. This
includes the full range of Wendland’s functions from [30](wendland:95-1)
as well as Wu’s functions from [?](wu:94-1) for certain values of n. In case
of φ(r) = (1 − r)4

+(1 + 4r) we have φ(r) = 1 − 10r2 + r3(20 − 15r + 4r2)
with n = 2. We now use u as an approximation to φ on small intervals. In
particular,

En(φ, h) = inf
p∈IP 1

n

‖φ(r)− p(r2)‖∞,[0,h]

≤ ‖r2n−1v(r)‖∞,[0,h]

≤ C5h
2n−1

for h ∈ [0, 1] with a suitable constant C5 depending on v, e.g.: C5 :=
‖v‖∞,[0,1]. Note that for the function φ(r) = (1 − r)4

+(1 + 4r) we get the
same order as for the polyharmonic spline φ(r) = r3.



3.5 Upper Bounds for the Optimal Power Function 77

So far we did not use sophisticated theorems from approximation theory, since
we were interested in the correct power of h, not in the optimal behaviour of
the bounds with respect to ` or n.

In the previous cases it did not make much sense to let ` or n be too large,
because the approximation order with respect to h is not improved, and
because we see later that large values of ` lead to bad Lebesgue constants
when heading for Assumption (3.5.5, FBAss2). But the next case will be
different in nature:

Example 3.5.16 (AEGEl) The Gaussian φ(r) = exp(−αr2) allows arbi-
trary values of ` = 2n − 1 because it is unconditionally positive definite. A
crude bound is provided by chopping the exponential series:

En(exp(−αr2, h) = inf
p∈IP 1

n

‖ exp(−αr)− p(r)‖∞,[0,h2]

= inf
p∈IP 1

n

‖ exp(−s)− p(s/α)‖∞,[0,αh2]

≤ (αh2)n

n!

for αh2 ≤ n + 1, which is not a serious restriction. By using the Taylor
residual one can get rid of the restriction, and by Bernstein’s theorem 3.5.20
(BT1) on approximation of analytic functions we can get a similar bound that
decays exponentially with n → ∞. Anyway, we see that the bound improves
dramatically with increasing n or ` = 2n− 1.

3.5.3 Jackson-Bernstein Theorems and Applications

This section contains the results from Approximation Theory that make the
previous results somewhat sharper. We stick to radial functions and use
univariate techniques. These consist of Jackson type theorems for the best
approximation of functions f ∈ Cn[a, b] by univariate polynomials in IP 1

` in
the supremum or Chebyshev or L∞ norm:

(EDef2)

E(`, f, [a, b]) := inf
p∈IP 1

`

‖f − p‖∞,[a,b] (3.5.17)

We additionally need the notion of Lipschitz continuity:

Definition 3.5.18 A function f is Lipschitz continuous on [a, b] of order
α ∈ [0, 1] with Lipschitz constant L, if

|f(x)− f(y)| ≤ L|x− y|α

holds for all x, y ∈ [a, b].
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Theorem 3.5.19 (JT1) For all functions f ∈ Cn[a, b] and all ` ≥ n we
have

E(`, f, [a, b]) ≤
(
π

4

)n (b− a)n

(`+ 1)` . . . (`− n+ 2)
‖f (n)‖∞.

If f (n) is Lipschitz continuous of order α with Lipschitz constant L, then

E(`, f, [a, b]) ≤
(
π

4

)n+1 (n+ 1)n

n!

(
b− a
`

)n+α

L.

These results of Jackson (see e.g. Cheney [2](cheney:??-1) or Meinardus
[3](meinardus:??-1)) yield bounds in terms of fixed negative powers of ` that
depend on the smoothness of f . They can be proven to be optimal. For
analytic functions, however, the parameter ` moves into the exponent of some
quantity that is smaller than one, and this yields a much better asymptotic
behaviour for ` → ∞ due to Bernstein (this is, for instance, in Natanson
[5](natanson:55-1)) :

Theorem 3.5.20 (BT1) Let f be a function on [a, b] which has a holomor-
phic continuation into an ellipse in C with foci a, b and half-axes of length
0 < r ≤ R. Then there is a constant K depending only on f, r, and R, but
not on `, such that

E(`, f, [a, b]) ≤ K

(
b− a

2(r +R)

)`
.

We cannot give proofs here, but the following weaker and easily accessible
result shows how the previous result is possible.

Theorem 3.5.21 (RSJT) Let f be a function on [−r, r] which has a holo-
morphic continuation into the circle CR in C with radius R > r such that
the continuation still is bounded on the boundary ∂CR of the circle. Then

E(`, f, [−r, r]) ≤ ‖f‖∞,∂CR
R

R− r

(
r

R

)`
,

and the bound is already achieved by the Taylor expansion around zero.

Proof: Just consider the power series of f in zero and bound it using
Cauchy’s inequality

|an| ≤ ‖f‖∞,∂CRR−n
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for the coefficients. This yields

|f(z)−
`−1∑
j=0

ajz
j| = |

∞∑
j=`

ajz
j|

≤
∞∑
j=`

|aj|rj

≤ ‖f‖∞,∂CR
∞∑
j=`

(
r

R

)j
≤ ‖f‖∞,∂CR

(
r

R

)` R

R− r

for all |z| ≤ r. 2

We now work our way through the examples.

Example 3.5.22 (AEPHS2) Consider thin-plate splines φ(r) = rβ. These
are conditionally positive definite of order m ≥ mβ := dβ

2
e. We have to

approximate rβ/2 on [0, h2] and do this directly by application of Jackson’s
theorem 3.5.19 (JT1). The function rβ/2 has mβ − 1 continuous derivatives,
and the final derivative is Lipschitz continuous of order

αβ :=
β

2
−mβ + 1 =

β

2
− bβ

2
c ∈ (0, 1)

with constant

Lβ =
β

2
(
β

2
− 1) . . . (

β

2
−mβ) = (1 + αβ)(2 + αβ) . . . (mβ − 1 + αβ) ≤ mβ!.

Then the two slightly different notions of (3.5.12, EDef1) and (3.5.17,
EDef2), which are related by the transformation r 7→

√
r in the argument

of the function, come out to be

En(rβ, h) = E(n, rβ/2, [0, h2]) ≤
(
π

4

)mβ (mβ)mβ−1

(mβ − 1)!

(
h2

n

)β/2
Lβ

for all ` = 2n− 1 ≥ m ≥ mβ. The result has the same power of h as before,
but now we can quantify the dependence on β and n. Unfortunately, the gain
for large n or ` = 2n−1 is much too weak to cope with the dramatic increase
of Lebesgue constants for increasing polynomial degrees.

Example 3.5.23 (AETPS2) We now continue with Example 3.5.14 (AETPS).
The radial function φ(r) = rβ log r with β ∈ 2IN is conditionally positive def-
inite of order m ≥ mβ := β/2 + 1. We have to consider polynomial approxi-
mations to rβ/2 log r for orders n satisfying ` = 2n−1 ≥ m ≥ mβ = β/2 + 1.
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The derivatives of rβ/2 log r for β ∈ 2IN produce lower-order polynomials of
type rβ/2−1, rβ/2−2, . . . which are subsumed in IP 1

n and do not change the ap-
proximation error. Thus we only have to consider the terms of type rα log r,
and we see that we can take β/2−1 continuous derivatives. The final deriva-
tive is (β/2)!r log r, which is Lipschitz continuous of order < 1, but not of
order 1. The direct application of the second version of Jackson’s theorem
3.5.19 (JT1) would not give the full order with respect to h due to this fact,
and therefore we first do the scaling of Example 3.5.14 (AETPS) to extract
the factor hβ out of En(rβ log r, h). Then the first version of Jackson’s theo-
rem yields

En(rβ log r, h) = hβEn(rβ log r, 1)
= E(n, rβ/2 log r, [0, 1])

≤
(
π
4

)β/2 (β/2)!
(n+1)n(n−1)...(n−β/2+2)

‖r log r‖∞,[0,1]

=
(
π
4

)β/2 ( n+ 1
β/2

)−1

e−1

for all ` = 2n− 1 ≥ m ≥ mβ = β/2 + 1. Again, we have some improvement
for increasing n, but it will not be enough to cope with the Lebesgue constants.

Example 3.5.24 (AEMQ) We now consider multiquadrics φ(r) = (c2 +
r2)β/2 for β /∈ 2IN and c > 0. In case of β > 0 they are conditionally positive
definite of order m ≥ mβ := dβ/2e, while they are positive definite for β < 0.
In this case we define mβ := 0. Multiquadrics are analytic around r = 0 and
their polynomial approximation can be treated by application of Bernstein’s
theorem 3.5.20 (BT1) or by Theorem 3.5.21 (RSJT). This means that we
should study the complex function f(z) = (c2 + z)β/2 which has a singularity
at z = −c2. For β > 0 the function is bounded on the circle Cc2, but for
negative β (inverse multiquadrics) we have to use a smaller radius. To be
safe, we use R = c2/2 in both cases and get

|f(z)| ≤ (3c2/2)β/2 ≤ 2|β/2|cβ

for β > 0 and |z| = R, while

|f(z)| ≤ (c2/2)β/2 = 2|β/2|cβ

for β < 0 yields the same bound. We approximate on [0, h2] and thus have
the constraint

h2 < R = c2/2

on what follows. Now Theorem 3.5.21 (RSJT) yields
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(MQB1)

En(φ, h) = E(n, f, [−h2, h2]) ≤ 2|β/2|cβ
c2

c2 − 2h2

(
2h2

c2

)n
(3.5.25)

for all ` = 2n− 1 ≥ m ≥ mβ.

Example 3.5.26 (AES1) We consider Sobolew radial basis functions

φ(r) = rνKν(r)

for ν > 0. These generate Sobolev spaces Wm
2 (IRd) for ν = m− d/2 and are

unconditionally positive definite. A direct application of Jackson’s theorems
requires the derivatives of φ, which are not easy to calculate and bound from
above. We postpone treatment of this case to section 4.4.1 (EBSob), where
we apply Fourier transform techniques.

3.5.4 Lebesgue Constants

(SecLebCon) We now face the verification of Assumption 3.5.5 (FBAss2),
which is a very hard problem. Let us first discuss some easy cases.

3.5.5 Lines and Triangles

Assume that we want to prove a bound for the error in a point x that lies on
a line between two distinct data points, say x1 and x2, and assume that the
distance between these points is 2h. We can define linear functions u1, u2 by

u1(y) :=
(y − x2)T (x1 − x2)

‖x1 − x2‖2
2

, u2(y) := 1− u1(y)

and see that uj(xk) = δjk, j, k = 1, 2. Any linear polynomial p restricted
to the line through x1 and x2 is uniquely recovered by p(x) = p(x1)u1(x) +
p(x2)u2(x). Note that Assumption 3.5.5 (FBAss2) only requires the recovery
in x, not everywhere. If x is way between x1 and x2, then clearly C3 = 2
suffices, since both u1(x) and u2(x) are in [0, 1] and sum up to 1. Furthermore,
we can set C2 = 1 and are done for cases with ` ≤ 2. This argument works
for every space dimension, but only on lines between two nearby data points.

We now go over to three points x1, x2, x3 ∈ IRd forming a nondegenerate
triangle T , and we consider points x inside such a triangle. If x lies on an
edge, we are in the previous case. Since our argument is carried out in a two-
dimensional affine subspace containing the triangle, we assume that we are in



82 3 GENERAL THEORY

R2 right away, and there are no problems going back to the embedded plane
in IRd. Nondegeneracy of the triangle, when written in bivariate coordinates,
means that the system

(
x1 x2 x3

1 1 1

) u1(y)
u2(y)
u3(y)

 =

(
y
1

)

has a nonsingular matrix and a unique solution. The components of the
solution are called the barycentric coordinates of y with respect to the
triangle spanned by x1, x2, x3, and they satisfy

• uj(y) is linear in y,

• uj(xk) = δjk, 1 ≤ j, k ≤ 3,

• p(y) =
3∑
j=1

uj(y)p(xj) for all p ∈ IP 2
2 ,

• uj(y) = 0 iff y lies on the boundary line opposite to xj,

• all uj(y) > 0, 1 ≤ j ≤ 3 iff y lies inside the triangle,

• the uj(y) are nonnegative and sum up to 1 for y not outside the triangle.

The reader will have noticed that this is a very simple generalization from
the two-point case. This can be carried further, but it never yields more than
reproduction by linear polynomials. It always works for d+ 1 points that lie
at least in IRd but not in a d− 1-dimensional affine subspace.

It is now clear that in our three-point case we get C3 = 2 independent of x
and h, and if h is taken as the fill distance 2.1.2 (DDDef)

h := h{x1,x2,x3},T := sup
x∈T

min
1≤j≤3

‖x− xj‖2,

of the triangle T , then we have C2 = 1. This argument works on all small
triangles that are formed by three data points that are not on a line.

We now assemble the two cases into a general strategy that works in IR2

for polynomial reproduction of order ` ≤ 2. Assume that the set X =
{x1, . . . , xM} ⊂ IR2 of scattered data is given, and let Ω be the convex hull
of X, i.e.: the smallest convex set containing X. Then Ω is a compact convex
polygon, and each point x of Ω either lies on a line between two points of X
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or in a nondegenerate triangle formed by three points of X. Assume that X
fills Ω with a fill distance

h := hX,Ω := sup
x∈Ω

min
1≤j≤M

‖x− xj‖2.

If the situation of one of the two above cases occurs, there will not necessarily
be two points on a line with distance at most 2h or a triangle T with local
fill distance h. We thus have to determine which distances as factors of h
are possible in these cases. We form the Delaunay triangulation of the set
X = {x1, . . . , xM} as described in section 9.1 (SecVor). This splits Ω into
triangles with vertices at the points of X, and where there is an edge from
xk to xj iff the midpoint between xk and xj has both xk and xj as points
of X with minimal distance. Since this distance is at most h, the Delaunay
triangles have edges of length at most 2h. If we work on a line joining two
vertices of the Delaunay triangulation, we thus have C2 = 1. Inside of such
triangles, the maximum distance from an interior point to the vertices is
achieved in the isosceles case, and thus the fill distance within Delaunay
triangles is at most 2h/

√
3. We thus get away with C2 = 2/

√
3 and C3 = 1

in both cases.

3.5.6 Univariate Data

The situation for local polynomial interpolation of order exceeding two is
much harder, even in one space dimension, where the solution still can be
given using elementary techniques. Let us do a simple, but nonoptimal
bound. Consider an odd number ` = 2k + 1 points ordered locally on the
real line like

x1 < x2 < . . . < x`

and let the fill distance of X = {x1, . . . , x`} be h/2, such that we have
xi+1 − xi ≤ h. The Lagrange basis functions for interpolation of order ` are

uj(x) =
∏
i6=j

x− xi
xj − xi

, 1 ≤ j ≤ `

and they get large if there are points with xj−xi extremely small. But those
points can be neglected if our points are a local subsample of a much larger
set. Let us thus assume a real number α ∈ (0, 1] with αh ≤ xi+1 − xi ≤ h.
Then the M − 1 = 2k factors in the numerator can be bounded above by
(2k)!h2k, while the denominator can be bounded below by (k!)2α2kh2k. We
have to sum M = 2k + 1 of these quotients, and thus

C3 ≤ 1 +
(2k + 1)!

(k!)2α2k
, ` = 2k + 1.
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This bound increases dramatically with `, unfortunately, but it is indepen-
dent of h. We can get an idea of the behaviour of C3, if we apply Stirling’s
inequality

(Stirling)

1 ≤ n!√
2πnnne−n

≤ exp(− 1

12n
). (3.5.27)

The result is

C3 ≤ O
(√

k
(

2

α

)2k
)

for k →∞ or in simplified form and as a function of `,

C3 ≤ O(γ`)

for `→∞ with some γ > 1.

Now let us apply this globally, and assume an ordered, but scattered set
X = {x1, . . . , xM} ⊂ IR with fill distance h. For a uniform distribution of
points of meshwidth 3h over Ω = [x1, xM ] we associate a scattered point
to each meshpoint, and then this selection of a subset of N ≤ M points
has a fill distance of 2.5h and each adjacent pair of points is at least h and
at most 5h apart. We then can apply the above bound with α = 1/5 by
local selection of ` points and an appropriate scaling. If we use a uniform
distribution with spacing Kh, we end up with α = (K − 2)/(K + 2) which
can be pushed towards 1 for K large. To check the value of C2, we have to
assume the worst case, in which some x lies at the boundary, while the next
interpolation point is 2.5h away, and the interpolation points are at maximal
distance 5h. Then the maximal value of |x− xj| is 2.5h+ (`− 1) · 5 · h < 5`h
such that we have C2 = 5`.

The above approach is unfeasible for multivariate cases, because we relied
heavily on the ordering of the points. But it gives us two pieces of useful
information: the good news is that we might get along with a quantity C3

that does not depend on h, but the bad news is that C3 will crucially depend
on the order ` of local polynomial interpolation. We address the two topics
one after another.

3.5.7 Independence of h

As we saw in the univariate case, one can expect that the scaling parameter
h cancels out in the bounds for C3. To generalize this statement, we repeat
the technique that we already used before:
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1. If a set X = {x1, . . . , xM} is given in Ω with fill distance h, we pick an
integer k ≥ 3 and lay a grid G = khZZd over Ω.

2. For each point from G ∩ Ω we pick the nearest data point from X.
This yields a subset Y of X of points that are only mildly scattered
and are at least (k − 2)h apart from each other. We need this to
avoid degeneration of the local polynomial interpolation that we want
to construct. Since the diagonal in the unit cube in Rd has length

√
d,

the fill distance of Y in Ω is at most h(1 + k
√
d).

3. If x ∈ Ω is given, we pick a selection of points from Y which are near
to x, and the indices of these points define the set Jx(h) occurring in
Assumption 3.5.5 (FBAss2).

4. The main problem now is to prove that the selection guarantees solv-
ability of polynomial interpolation of order `.

5. We then evaluate the Lebesgue constants for this local interpolation.

If k is large, the set Y will consist of points that are relatively near to the grid
G = khZZd, since they can be only h away from gridpoints. Thus the local
interpolation takes place on data that are slight perturbations of gridded
data. We thus have to study polynomial interpolation on gridded data first,
and then ask for admissible perturbations.

We write multivariate polynomials p ∈ IP d
` as

(PolRep)

p(x) =
∑
|α|<`

pαx
α (3.5.28)

with the usual multiindex notation:

α ∈ ZZd
≥0, |α| := ‖α‖1, x

α :=
d∏
j=1

x
αj
j .

The number of data points should equal the number of basis functions, and
thus we simply use the data set

Xd
` := { β ∈ ZZd

≥0 : |β| < ` }.

For d = 2 these are the points (j, k) ∈ ZZ2 with 0 ≤ j, k ≤ j + k < ` forming
a “triangle” in ZZ2.
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Lemma 3.5.29 (LemPIG) The set Xd
` is a minimal nondegenerate set in

IRd for polynomials in IP d
` . Thus polynomial interpolation of order ` is

uniquely possible.

Proof: Since the dimension of IP d
` and the number of points in Xd

` agree,
it suffices to prove nondegeneracy. Let p be a polynomial of the form
(3.5.28, PolRep) that vanishes on Xd

` , and we want to show that p vanishes
everywhere. We do this by induction on the space dimension d, and the case
d = 1 is well-known. So we assume that for k < ` all polynomials from IP d

k

that vanish on Xd
k must be identically zero. Now we extract the variable

xd from each of the terms in (3.5.28, PolRep), split x as x = (x̃, xd), and
rearrange the sum. This yields

p(x) = p(x̃, xd) =
`−1∑
j=0

pj(x̃)xjd

with polynomials pj ∈ IP d−1
`−j . Setting x = (0, k) for 0 ≤ k < ` we see that

(0, k) ∈ Xd
` and the univariate polynomial

p(0, xd) =
`−1∑
j=0

pj(0)xjd

in IP 1
` vanishes in the ` distinct points k, 0 ≤ k < `. Thus it is zero as a

polynomial in xd, proving pj(0) = 0, 1 ≤ j < `. Looking at p`−1 ∈ IP d−1
1 we

see that p`−1 must be zero.

Now let us start an inner induction over an integer j = 1, 2, . . . and assume
that we already have proven that p`−j, . . . , p`−1 are identically zero, and that
all of the pi vanish on Xd−1

j . This is precisely what we have proven for j = 1

and Xd−1
1 = {0}. Now fix an arbitrary β ∈ Xd−1

j+1 \Xd−1
j . Then |β| = j and

we can form the data points x = (β, k) ∈ Xd
` for 0 ≤ k < `− j. Considering

these points, the univariate polynomial

p(β, xd) =
`−j−1∑
i=0

pi(β)xid

must have vanishing coefficients, and thus all pi vanish on Xd−1
j+1 . For

p`−j−1 ∈ IP d−1
j+1 the hypothesis of the outer induction yields that this poly-

nomial vanishes identically, and this finishes the inner and outer induction.
2

Now we know that (in a fixed enumeration of Xd
` used for rows as well as

columns) the matrix with elements αβ for α, β ∈ Xd
` is nonsingular. It is a
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continuous function of the data locations α, and thus it is still nonsingular
when all the points vary in local balls of some positive radius ρ ∈ (0, 1/2)
around the integer points of Xd

` . This radius is a function of both d and
`, and to give an explicit positive lower bound for it is a formidable task.
We neglect this problem now and consider d and ` as fixed, leading to some
mysterious, but clearly positive radius ρ for admissible perturbations.

Lemma 3.5.30 (LemPIP) For each space dimension d and each polynomial
order ` there is a positive quantity ρ(d, `) such that interpolation by polyno-
mials in IP d

` is uniquely possible in all data sets that pick a point in each of
the balls

Bρ(α) := { y ∈ IRd : ‖y − α‖2 ≤ ρ}
for all α ∈ Xd

` . The maximum Lebesgue constant for all of these polynomial
interpolation processes, measured on a fixed ball BR of some large radius R
containing the set Xd

` is some finite positive quantity C∗3(d, `, R).

Proof: Each pick of points defines a nice interpolation problem that has
Lagrange basis functions {uα}α depending continuously on the locations of
the points. Thus also the Lebesgue constant

1 + sup
x∈BR

∑
α∈Xd

`

|uα(x)|

varies (via the uα) continuously with the data locations. Since these vary
in a compact set, the Lebesgue constants, as defined above, attain a finite
maximum under variation of the data locations. 2

Of course, one could replace the domain BR of “measurement” in the
Lebesgue constant by any compact set in IRd, but note that the actual upper
bound of the Lebesgue constants remains mysterious, and enlarging BR will
have a nasty blow-up effect.

The next step is the independence of the above situation under shifts and
scaling:

Lemma 3.5.31 (LemPIS) Let Y ⊂ IRd be a data set where interpolation by
IP d
` is uniquely possible, and let {uy(·)}y∈Y be the associated Lagrange basis

satisfying uy(x) = δxy for x, y ∈ Y . If Y is translated by some z ∈ IRd and
scaled by some h > 0 to go over into

Z := h(Y − z) := { yh := h(y − z) : y ∈ Y },

then interpolation in Z is equally possible, using the basis functions

uyh(·) := uy(z + ·/h)
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and yielding the same Lebesgue constants, if the domain of measurement of
those is translated and scaled accordingly, i.e.: the domain B is transformed
into h(B − y).

Proof: The definition of the new functions makes sure that they are poly-
nomials in IP d

` and satisfy the Lagrange interpolation property. Looking at
the definition of the Lebesgue constant proves the rest. 2

We now go back to our data set X = {x1, . . . , xM} that fills Ω with a fill
distance h, and we pick points from X that are perturbations of points
from a grid khZZd laid over Ω. The perturbations thus stay within h of
the grid points, while these are kh apart along the axes. Scaling them down
by division with kh will bring them to the unit grid Zd, and the scaled
perturbations will stay within a radius 1/k. We thus have to make sure that
1/k ≤ ρ(d, `) holds and that we use a shifted, scaled, and perturbed version
of Xd

` for local interpolation. The point x must lie in the shifted and scaled
domain of measurement of the Lebesgue constant. We then can use the
bound C∗3(d, `, R) of the Lebesgue constant from Lemma 3.5.30 (LemPIP)
for all h, as asserted.

Thus we are left to determine the constant C2 of Assumption 3.5.5 (FBAss2)
that bounds the maximal distance of x in terms of multiples of h to the
points we use for interpolation. This is no big deal when x is in the interior
of Ω and h is small enough, and we can then get away with something like
C2 = k`

√
d, the diameter of the cube [0, k`]d. If x lies near the boundary

of Ω, we must be more careful, because the boundary could have awkward
outgoing cusps that take boundary points far away from places where we can
find enough data from X that lie near the gridpoints of khZZd and allow full
interpolation up to order `. We make the following assumption:

Definition 3.5.32 (DefICC) A closed compact domain Ω ∈ IRd with
nonempty interior satisfies an interior cone condition, if there is a fixed
positive angle γ and a fixed height δ such that for any boundary point x there
is a cylindrical cone within Ω that has vertex x, angle γ at the vertex, and
height δ.

If Ω satisfies an interior cone condition, we can consider coverings of Ω by
fine grids εZZd, and we see that there is a constant Kc such that for all ε
that are small enough, i.e. ε ≤ εc, any point of Ω is only Kcε away from
a grid cell of εZZd that is completely contained in Ω. We apply this for
ε := kh` ≤ εc and get that any x is at most Kcε = Kckh` away from a fully
interior cell of sidelength kh` in which we can do the local interpolation.
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Thus all interpolation points will be at most (Kc + 1)kh`
√
d away from x

and we can use C2 = (Kc + 1)k`
√
d.

We have two restrictions up to now:

1/k ≤ ρ(d, `) and kh` ≤ εc.

This yields the conditions

h ≤ hc :=
εc
k`

and k ≥ 1

ρ(d, `)

which are no problem for fixed values of d, `, and the interior cone condition
on Ω. We summarize:

Theorem 3.5.33 (LPIT) For given values of d and ` and for a fixed cone
condition there are positive constants hc, C2, C3 such that Assumption 3.5.5
(FBAss2) is valid for all x in domains Ω ⊂ IRd satisfying the cone condition,
and for all h ≤ hc. 2

Theorem 3.5.33 (LPIT) is useful for all cases where the local approximation
uses only a finite degree `, and where the exact value of the constants does
not matter much. We defer a more detailed analysis to the next lemmas,
where we rely on [18](madych-nelson:92-1).

To treat the general case, we cite without proof a deep result from
[18](madych-nelson:92-1):

Theorem 3.5.34 (MNL) Let R be a cube in IRd which is divided into Kd

identical subcubes for some large integer K, and define γd := 2d(1 + γd−1)
starting with γ1 := 2. Consider arbitrary polynomials p from IP d

` and assume
K ≥ `γd. Then

(MNLBound)

‖p‖∞,R ≤ e2d`γd‖p‖∞,Y (3.5.35)

holds for any set Y ⊂ R that picks a point from each of the subcubes. In
particular, all these sets Y are IP d

` -nondegenerate.

We now bring this into line with Lemma 3.5.30 (LemPIP) and assume ` ≥ 2
throughout. We want to let the little subcubes be centered around the points
of Xd

` . If their sidelength is 2ρ to make balls of radius ρ safely contained in
the cubes, we have to take (2ρ)−1 =: M ∈ IN and let the large cube be
R = [−ρ, `− 1 + ρ]d. Splitting it into Kd subcubes yields the equation

2ρ =
`− 1 + 2ρ

K
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which leads to

K = 1 +M(`− 1), ρ =
`− 1

2(K − 1)
, M = b`γd − 1

`− 1
c.

This allows the application of Theorem 3.5.34 (MNL). We first check the
value of ρ as a function of d and `. If we bound M crudely from above by
2γd, we get ρ ≥ (4γd)

−1, which is independent of `.

The linear functional δx : p 7→ p(x) can be written in the form∑
α∈Xd

`

p(zα)uα(x)

where we have picked zα from the ball Bρ(α), and where the uα are the
Lagrange interpolation polynomials. Then we fix x ∈ R and interpolate data
sgn (uα(x)) in zα by some polynomial p̃ ∈ IP d

` and get the bound∑
α∈Xd

`

|uα(x)| = p̃(x) ≤ ‖p̃‖∞,R ≤ e2d`γd .

Thus the Lebesgue constant in Lemma 3.5.30 (LemPIP) is bounded by
(C3def)

C∗3 ≤ 1 + e2d`γd . (3.5.36)

We now go over to the situation in Theorem 3.5.33 (LPIT). We fix a cone
condition and a space dimension. This fixes the constants εc, hc, and Kc

from the cone condition. The integer k can be chosen as k = 4γd to satisfy
kρ ≥ 1, and we are left with the condition

(hrestr)

h ≤ hc =
εc

4`γd
(3.5.37)

under which we can use (3.5.36, C3def) and
(C2def)

C2 = 4(Kc + 1)`
√
dγd. (3.5.38)

Theorem 3.5.39 (LPIT2) The assumption 3.5.5 (FBAss2) can be satisfied
for each compact domain Ω ⊂ IRd satisfying an interior cone condition 3.5.32
(DefICC) that defines positive constants εc, Kc. If γd is defined as in 3.5.34
(MNL), the constants C2 and C3 can be bounded by (3.5.38, C2def) and
(3.5.36, C3def), respectively, while the polynomial order ` and the fill distance
h must satisfy (3.5.37, hrestr).
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3.5.8 Error Bounds in Terms of Fill Distance

(hrhodef) We can now assemble the previous results into bounds of the form
(3.4.15, FBound) for the power function from optimal recovery. Together
with (3.4.4, EqgSg1) from page 64 this yields error bounds for the recon-
struction of functions g from native spaces G. Depending on the situation,
we get quite explicit bounds for the power function in cases of small space
dimensions and polynomial orders, while for fixed orders and arbitrary space
dimension we use Theorem 3.5.33 (LPIT) to carry the order of the local
bounds on the power functions over to the errors of optimal recoveries, the
constants being mysterious. We list the orders (without the factors) of our
L∞ bounds on the power function in Table 6 (TCPDEB), but delay the cases
with exponential convergence somewhat. The additional data (parameters,
domains, smoothness, dimension, order) should be looked up from tables 1
(TCPDFct) and 2 (TPDFct) on page 18. Note that the actual approximation
orders of optimal recoveries may be better than the squares of these bounds.

φ(r) L∞ Bound of Power Function

rβ hβ/2

rβ log r hβ/2

(r2 + γ2)β/2 exp(−c/h), c > 0

e−βr
2

exp(−c/h2), c > 0
rνKν(r) hν

(1− r)2
+(2 + r) h1/2

(1− r)4
+(1 + 4r) h3/2

Table 6: L∞ Bounds of Power Function Based on Lagrange Data (TCPDEB)

Unfortunately, the factor |g−S(g)|Φ in the actual error bound (3.4.4, EqgSg1)
still is somewhat mysterious, if we start with a conditionally positive definite
function Φ and construct the corresponding native space. If, on the other
hand, we have started with G, we are done. But note that these bounds can
be improved, if g satisfies additional conditions. These improvements cannot
come from better bounds on the power function, because we shall see that
our techniques often provide optimal orders with respect to h. They rely on
a deeper analysis of the term |g − S(g)|Φ, and this analysis will be done in
3.6 (SecEBStage2) and 3.7 (SecEBStage3).
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We now discuss the cases of multiquadrics and Gaussians, where we can push
the polynomial order ` up to infinity. The overall bound for P 2(x) is given by
(3.5.10, FundBound), and we have to insert (3.5.38, C2def), (3.5.36, C3def)
and the replacement of h by 2h

√
d from section 3.5.2 (SecAERC). The values

of ρ and C1 depend on the special case chosen.

Let us first look at multiquadrics. The bound on P 2(x) then is

P 2(x) ≤ 2|β/2|+1cβ
(
1 + e2d`γd

)2 (
4(Kc + 1)`

√
dγd

)2n (
8h2d
c2

)n
under the restrictions 8h2d < c2/2 and (3.5.37, hrestr). We now treat
everything as fixed except h and ` = 2n − 1. This turns the bound into
something of the form

C4 (C5nh)2n ,

and we shall pick n = (` + 1)/2 as a function of h as large as possible, but
such that the constraints

C5nh ≤ γ < 1, 4`hγd ≤ εc

are satisfied. This works with n = ch−1/2 and some positive constant c.
Then the bound becomes

C4γ
c/h = C4 exp(−| log γ|c/h)

and proves exponential behaviour for h→∞.

The Gaussian case is quite similar and can easily be reduced to a bound like

C4
(C5nh)2n

n!
,

which allows the same treatment. But now we can use the additional n!
in the denominator to speed up the convergence. We first insert Stirling’s
formula (3.5.27, Stirling) into the denominator to cancel an nn factor in the
numerator, introducing some change in the constants C4 and C5. This yields

C4

(
C5

√
nh
)2n

,

and we now pick n = ch−2/2 to get

C5

√
nh ≤ γ < 1.

The second restriction, induced by the interior cone condition, cannot be
satisfied in this case, and this is why our final result will only hold in the
interior or near smooth boundary parts of Ω. We get the bound

C4γ
c/h2

= C4 exp(−| log γ|c/h2)

with ”Gaussian” exponential behaviour for h→∞.
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Theorem 3.5.40 (GMCEBT) The power functions of Lagrange interpola-
tion by multiquadrics and Gaussians have L∞ bounds of the form exp(−c/h)
with c > 0 for compact domains Ω ⊂ IRd satisfying an interior cone con-
dition. The bound for the Gaussian can be improved to exp(−c/h2) in the
interior or near smooth parts of the boundary of Ω.

3.5.9 Remarks

The proof of bounds on the power function via polynomial approxima-
tion goes back to Duchon [6](duchon:76-1) for thin-plate splines and was
successfully generalized by Madych and Nelson [15](madych-nelson:88-1),
[18](madych-nelson:92-1). The special cases of lines and triangles were done
for thin-plate splines by Powell [27](powell:93-1).

3.6 Doubling the Approximation Order

(SecEBStage2) Here we show how the error bounds of the form (3.4.4,
EqgSg1) can be improved by adding some assumptions on the function g that
is reconstructed. A third enhancement, based on a localization argument, will
follow in 3.7 (SecEBStage3).

We work in the setting of section 3.3.5 (SecSN) and define the bilinear form
(Norm2)

(f, g)2 :=
∫

Ω
δx,Pf · δx,Pgdx (3.6.1)

for all f, g ∈ G. Because of

(δx,Pf)2 = (δyx,PΦ(y, ·), f)2
Φ ≤ ‖δx,P‖2

Φ‖f‖2
Φ

and since ΨP(x, y) = (δx,P , δy,P)Φ is the normalization of Φ with respect tp
P , we can use its continuity and get that the bilinear form (3.6.1, Norm2) is
well-defined and continuous with respect to the bilinear form in G:

|(f, g)2| ≤ ‖f‖2‖g2 ≤ ‖ΨP(x, x)‖L2(Ω)‖f‖Φ‖g‖2 ≤ ‖ΨP(x, x)‖2
L2(Ω)‖f‖Φ‖g‖Φ.

We apply this to (3.4.4, EqgSg1) and get

‖g − S(g)‖2 ≤ ‖PΛ(·)‖L2(Ω)‖g − S(g)‖Φ

for the optimal power function PΛ and the optimal recovery S(g) of g ∈ G.

For any g ∈ G we can consider the continuous linear functional f 7→ (f, g)2

on the Hilbert space F . Then there is a function Cg ∈ G such that
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(Cmapdef)

(f, g)2 = (f, Cg)Φ for all f ∈ G. (3.6.2)

We now define the subspace

H := P + C(F) ⊆ G

of G and consider optimal recovery of functions g = p + C(fg) ∈ H by
g∗ = S(g). The orthogonality (3.1.34, EqOrtho) then implies

‖g − S(g)‖2
Φ = (g − S(g), g − S(g))Φ

= (g, g − S(g))Φ

= (Cfg, g − S(g))Φ

= (fg, g − S(g))2

≤ ‖fg‖2‖g − S(g)‖2

≤ ‖fg‖2‖PΛ(·)‖L2(Ω)‖g − S(g)‖Φ

and this allows to bound ‖g − S(g)‖Φ nicely by

‖g − S(g)‖Φ ≤ ‖PΛ‖L2(Ω)‖fg‖2

for all g = p+ Cfg ∈ H. If we combine this with (3.4.4, EqgSg1), we get

Theorem 3.6.3 (EBStage2T) For optimal reconstruction of functions g ∈
H ⊂ G with g = Cfg in the sense of (3.6.2, Cmapdef) by optimal recovery
functions S(g) we have the improved error bound

|(g − S(g))(x)| ≤ P (x)‖P‖L2(Ω)‖fg‖2

for all x ∈ Ω.

3.6.1 Remarks

The results of 3.6 (SecEBStage2) are from [9](RSImpEB) and derived from
the arguments used in classical spline theory [1](ahlberg-et-al:86-1) to im-
prove the approximation order via the “second integral relation”.

3.7 Improvement by Localization

(SecEBStage3) Here we use a localization argument dating back to Duchon
[6](duchon:76-1) to get some additional powers of h for error bounds of
optimal recovery via Lagrange interpolation. We delay the formulation of
these results until the current discussion between M. Buhmann, W. Light,
and R. S. about this topic has settled.
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4 Advanced Results on IRd

(SecARRd) Here we introduce Fourier transforms in IRd, and derive a series
of results that require related techniques. These include bounds on the
stability and error bounds for the multilevel method.

4.1 Fourier Transforms on IRd

4.1.1 Fourier Transforms of Tempered Test Functions

There are two major possibilities to pick a space S of test functions on IRd

to start with, and we take the tempered test functions that are verbally
defined as real-valued functions on IRd whose partial derivatives exist for all
orders and decay faster than any polynomial towards infinity.

Definition 4.1.1 (DefFT) For a test function u ∈ S, the Fourier trans-
form is

û(ω) := (2π)−d/2
∫
IRd
u(x)e−ix·ωdx,

where ω varies in IRd and x ·ω is shorthand for the scalar product xTω = ωTx
to avoid the T symbol in the exponent. Since the definition even works for
general u ∈ L1(IRd), it is well-defined on S and clearly linear. Note that we
use the symmetric form of the transform and do not introduce a factor 2π
in the exponent of the exponential. This sometimes makes comparisons to
other presentations somewhat difficult.

To get used to calculations of Fourier transforms, let us start with the
Gaussian uγ(x) = exp(−γ‖x‖2

2) for γ > 0, which clearly is in the space
of test functions, since all derivatives are polynomials multiplied with the
Gaussian itself. As a byproduct we shall get that the Gaussian is positive
definite on IRd. Fortunately, the Gaussian can be written as a d-th power of
the entire analytic function exp(−γz2), and we can thus work on Cd instead
of IRd. We simply use substitution in

ûγ(iω) = (2π)−d/2
∫
IRd e

−γ‖x‖22ex·ωdx

= (2π)−d/2e‖ω‖
2
2/4γ

∫
IRd e

−‖√γx−ω/2√γ‖22dx

= (2πγ)−d/2e‖ω‖
2
2/4γ

∫
IRd e

−‖y‖22dy

and are done up to the evaluation of the dimension-dependent constant∫
IRd
e−‖y‖

2
2dy =: cd
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which is a d-th power, because the integrand factorizes nicely. We calculate
c2 by using polar coordinates and get

c2 =
∫
IR2 e−‖y‖

2
2dy

=
∫ 2π

0

∫∞
0 e−r

2
r dr dϕ

= 2π
∫∞

0 e−r
2
r dr

= −π
∫∞

0 (−2r)e−r
2
dr

= π.

This proves the first assertion of

Theorem 4.1.2 (GaussPD) The Gaussian

uγ(x) = exp(−γ‖x‖2
2)

has Fourier transform
(GFT)

ûγ(ω) = (2γ)−d/2e−‖ω‖
2
2/4γ (4.1.3)

and is unconditionally positive definite on IRd.

Proof: Let us first invert the Fourier transform by setting β := 1/4γ in
(4.1.3, GFT):

exp(−β‖ω‖2
2) = (4πβ)−d/2

∫
IRd e

−‖x‖22/4βe−ix·ωdx

= (2π)−d/2
∫
IRd(2β)−d/2e−‖x‖

2
2/4βe+ix·ωdx.

Then take any set X = {x1, . . . , xM} ⊂ IRd of M distinct points and any
vector α ∈ IRM to form

αTAX,uγα =
M∑

j,k=1

αjαk exp(−γ‖xj − xk‖2
2)

=
M∑

j,k=1

αjαk(4πγ)−d/2
∫
IRd
e−‖x‖

2
2/4γe−ix·(xj−xk)dx

= (4πγ)−d/2
∫
IRd
e−‖x‖

2
2/4γ

M∑
j,k=1

αjαke
−ix·(xj−xk)dx

= (4πγ)−d/2
∫
IRd
e−‖x‖

2
2/4γ

∣∣∣∣∣∣
M∑
j=1

αje
−ix·xj

∣∣∣∣∣∣
2

dx ≥ 0.
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This proves positive semidefiniteness of the Gaussian. To prove definiteness,
we can assume

f(x) :=
M∑
j=1

αje
−ix·xj = 0

for all x ∈ IRd and have to prove that all coefficients αj vanish. Taking
derivatives at zero, we get

0 = Dβf(0) =
M∑
j=1

αj(−ixj)β,

and this is a homogeneous system for the coefficients αj whose coefficient
matrix is a generalized Vandermonde matrix, possibly transposed and with
scalar multiples for rows or columns. This proves the assertion in one dimen-
sion, where the matrix corresponds to the classical Vandermonde matrix.
The multivariate case reduces to the univariate case by picking a nonzero
vector y ∈ IRd that is not orthogonal to any of the finitely many differences
xj −xk for j 6= k. Then the real values y ·xj are all distinct for j = 1, . . . ,M
and one can consider the univariate function

g(t) := f(ty) =
M∑
j=1

αje
−ity·xj = 0

which does the job in one dimension. 2

Note that the Gaussian is mapped to itself by the Fourier transform, if we
pick γ = 1/2. We shall use the Gaussian’s Fourier transform in the proof of
the fundamental Fourier Inversion Theorem:

Theorem 4.1.4 (FTTS) The Fourier transform is bijective on S, and its
inverse is the transform

ǔ(x) := (2π)−d/2
∫
IRd
u(ω)eix·ωdω.

Proof: The multivariate derivative Dα of û can be taken under the integral
sign, because u is in S. Then

(Dαû)(ω) = (2π)−d/2
∫
IRd
u(x)(−ix)αe−ix·ωdx,

and we multiply this by ωβ and use integration by parts

ωβ(Dαû)(ω) = (2π)−d/2
∫
IRd u(x)(−ix)α(i)β(−iω)βe−ix·ωdx

= (2π)−d/2
∫
IRd u(x)(−ix)α(i)β dβ

dxβ
e−ix·ωdx

= (2π)−d/2(−1)|α|+|β|iα+β
∫
IRd e

−ix·ω dβ

dxβ
(u(x)xα)dx
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to prove that û lies in S, because all derivatives decay faster than any
polynomial towards infinity. The second assertion follows from the Fourier
inversion formula

u(x) := (2π)−d/2
∫
IRd
û(ω)eix·ωdω

that we now prove for all u ∈ S. This does not work directly if we naively
put the definition of û into the right-hand-side, because the resulting multiple
integral does not satisfy the assumptions of Fubini’s theorem. We have to do
a regularization of the integral, and since this is a standard trick, we write it
out in some detail:

(2π)−d/2
∫
IRd û(ω)eix·ωdω = (2π)−d

∫
IRd
∫
IRd u(y)ei(x−y)·ωdydω

= lim
ε↘0

(2π)−d
∫
IRd

∫
IRd
u(y)ei(x−y)·ω−ε‖ω‖22dydω

= lim
ε↘0

(2π)−d
∫
IRd

(∫
IRd
ei(x−y)·ω−ε‖ω‖22dω

)
u(y)dy

= lim
ε↘0

∫
IRd
ϕ(ε, x− y)u(y)dy

with
(deltaschar)

ϕ(ε, z) := (2π)−d
∫
IRd
eiz·ω−ε‖ω‖

2
2dω. (4.1.5)

The proof is completed by application of the following result that is useful
in many contexts: 2

Lemma 4.1.6 (LemRepro) The family of functions ϕ(ε, z) of (4.1.5,
deltaschar) approximates the point evaluation functional in the sense

(Repro)

u(x) = lim
ε↘0

∫
IRd
ϕ(ε, x− y)u(y)dy (4.1.7)

for all functions u that are in L1(IRd) and continuous around x.

Proof: We first remark that ϕ is a disguised form of the inverse Fourier
transform equation of the Gaussian. Thus we get

(deltarep)

ϕ(ε, x) = (4πε)−d/2e−‖x‖
2
2/4ε (4.1.8)

and ∫
IRd
ϕ(ε, x)dx = (4πε)−d/2

∫
IRd
e−‖x‖

2
2/4εdx = 1.
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To prove (4.1.7, Repro), we start with some given δ > 0 and first find some
ball Bρ(x) of radius ρ(δ) around x such that |u(x) − u(y)| ≤ δ/2 holds
uniformly for all y ∈ Bρ(x). Then we split the integral in

|u(x)−
∫
IRd ϕ(ε, x− y)u(y)dy| = |

∫
IRd ϕ(ε, x− y)(u(x)− u(y))dy|

≤
∫
‖y−x‖2≤ρ ϕ(ε, x− y)|u(x)− u(y)|dy

+
∫
‖y−x‖>ρ ϕ(ε, x− y)|u(x)− u(y)|dy

≤ δ/2 + (4πε)−d/2e−ρ
2/4ε2‖u‖1

≤ δ

for all sufficiently small ε. 2

Due to the Fourier inversion formula, we now know that the Fourier transform
is bijective on S.

We now relate the Fourier transform to the L2 inner product, but we have
to use the latter over C to account for the possibly complex values of the
Fourier transform. Furthermore, we have good reasons to define the inner
product as

(Ltwodef)

(f, g)L2(IRd) := (2π)−d/2
∫
IRd
f(x)g(x)dx (4.1.9)

with a factor that simplifies some of the subsequent formulae.

Fubini’s theorem easily proves the identity

(v, û)L2(IRd) = (2π)−d
∫
IRd
v(x)

∫
IRd
u(y)e+ix·ydydx = (v̌, u)L2(IRd)

for all test functions u, v ∈ S. Setting v = ŵ we get Parceval’s equation
(ParsRd)

(ŵ, û)L2(IRd) = (w, u)L2(IRd) (4.1.10)

for the Fourier transform on S, proving that the Fourier transform is isometric
on S as a subspace of L2(IRd).

4.1.2 Fourier Transforms of Functionals

With Parceval’s equation in mind, let us look at the linear functional

λu(v) := (u, v)L2(IRd)
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on S. We see that

λû(v) = (û, v)L2(IRd) = (u, v̌)L2(IRd) = λu(v̌)

holds. A proper definition of the Fourier transform for functionals λu should
be in line with the functions u that represent them, and thus we should define

λ̂u := λû

or in more generality
λ̂(v) := λ(v̌)

for all v ∈ S. Since the space S of test functions is quite small, its dual, the
space of linear functionals on S, will be quite large.

Definition 4.1.11 The Fourier transform of a linear functional λ on S is
the linear functional λ̂ on S defined by

λ̂(v) := λ(v̌)

for all v ∈ S.

If we can represent the functional λ̂ as λv, we write v = λ̂ as a shorthand
notation, but keep the original meaning in mind. Let us look at some
examples.

Example 4.1.12 (ExDelta) The functional δx(v) := v(x) has the form

δx(v) = v(x) = (2π)−d/2
∫
IRd
v̂(ω)e+ix·ωdω,

and its Fourier transform is of the form λu with

u(ω) = δ̂x(ω) = e−x·ω.

Here, the normalization of the L2 inner product (4.1.9, Ltwodef) pays off.
Note that the Fourier transform is not a test function, but rather an at most
polynomially growing function from K and in particular a bounded function.
The functional δ := δ0 has the Fourier transform 1.

Example 4.1.13 (Exlxma) A very important class of functionals for our
purposes consists of the space P⊥Ω of functionals of the form (3.3.1, Deflxma)
that vanish on IP d

m. Their action on a test function v is

λX,Mα(v) =
M∑
j=1

αjv(xj)

= (2π)−d/2
∫
IRd
v̂(ω)

M∑
j=1

αje
ixj ·ωdω

= λ̂X,Mα(v̂)
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such that the Fourier transform of the functional λX,Mα is the functional
generated by the bounded function

λ̂X,M,α(ω) =
M∑
j=1

αje
−ixj ·ω.

If we expand the exponential into its power series, we see that

λ̂X,M,α(ω) =
∞∑
k=0

M∑
j=1

αj(−ixj · ω)k/k!

=
∞∑
k=m

M∑
j=1

αj(−ixj · ω)k/k!

since the functional vanishes on IP d
m. Thus λ̂X,M,α(ω) has a zero of order at

least m in zero. If the functional λX,Mα itself were representable by a function
u, the function u should be orthogonal to all polynomials from IP d

m. We shall
use both of these facts later.

Example 4.1.14 (ExFTPol) The monomials xα are in the space K, and
thus they should at least have generalized Fourier transforms in the sense of
functionals. This can easily be verified via(

−i d
dx

)α
v(x) =

(
−i d

dx

)α
(2π)−d/2

∫
IRd v̂(ω)e+ix·ωdω

= (2π)−d/2
∫
IRd v̂(ω)(−i · iω)αe+ix·ωdω

= (2π)−d/2
∫
IRd v̂(ω)ωαe+ix·ωdω

and the associated functional is

v 7→
(
−i d
dx

)α
v(x)

at x = 0.

4.1.3 Fourier Transform in L2(IRd)

The test functions from S are dense in L2(IRd) (see Lemma 10.5.3 (FTD) for
details), and thus we have

Theorem 4.1.15 (FLtwoT) The Fourier transform has an L2-isometric
extension from the space S of tempered test functions to L2(IRd). The same
holds for the inverse Fourier transform, and both extensions are inverses of
each other in L2(IRd). Furthermore, Parceval’s equation (4.1.10, ParsRd)
holds in L2(IRd). 2
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Note that this result does not allow to use the Fourier transform formula (or
its inverse) in the natural pointwise form. For any f ∈ L2(IRd) one first has
to provide a sequence of test functions vn ∈ S that converges to f in the
L2 norm for n → ∞, and then, by continuity, the image f̂ of the Fourier
transform is uniquely defined almost everywhere by

lim
n→∞

‖f̂ − v̂n‖L2(IRd) = 0.

This can be done via Friedrich’s mollifiers as defined in (10.5.2, Friedmoll),
replacing the Gaussian in the representation (4.1.8, deltarep) by a compactly
supported infinitely differentiable function.

A more useful characterization of f̂ is the variational equation

(f̂ , v)L2(IRd) = (f, v̌)L2(IRd)

for all test functions v ∈ S, or, by continuity, all functions v ∈ L2(IRd).

4.2 Native Spaces Characterized by Transforms

(SecCNST) In section 3.2.4 (SecIP) we have seen that on IRd we can restrict
ourselves to cases where the recovery problem is translation-invariant or even
invariant under Euclidean rigid-body transformations. In the first case, the
conditionally positive definite functions Φ(x, y) take the form Φ(x−y), while
in the second they are radial: Φ(x, y) = φ(‖x−y‖2). We start with the more
general case, but we restrict ourselves to unconditionally positive definite
functions first.

So let us now consider a function Φ : IRd → IR with Φ(−·) = Φ(·) such that
Ψ(x, y) := Φ(x − y) is an unconditionally positive definite function on IRd.
Having the Gaussian in mind as a prominent example, we assume Φ to have
a continuous nonnegative real-valued and integrable Fourier transform Φ̂ on
IRd such that the Fourier inversion formula holds. We now want to construct
the native space G by the techniques of section 3.3 (SecNS). Clearly, the
representation (3.3.2, DefBil) of the bilinear form (·, ·)Φ can now be rewritten
as

(DefBil2)

(λX,M,α, λY,N,β)Φ := (2π)−d/2
∫
IRd

Φ̂(ω)
M∑
j=1

N∑
k=1

αjβke
i(xj−yk)·ωΦdω. (4.2.1)
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The functions F (λX,M,α) have Fourier transforms

F̂ (λX,M,α)(ω) = Φ̂(ω)
M∑
j=1

αje
−xj ·ω

= Φ̂(ω)λ̂X,M,α

if we define Fourier transforms of functionals appropriately.

4.3 Condition Numbers

(SecCNTrans)

4.4 Error Bounds

(SecEBTrans)

Example 4.4.1 (EBSob) Sobolev radial bsis functions

5 Special Theory

(SecST) Here we introduce general transforms and generalize the results
that we had on IRd. We start with generalizing the notion of a transform in
order to cover some other cases we consider in some detail later:

1. Fourier series on [0, 2π]d,

2. General expansions in orthogonal series,

3. Harmonic analysis on locally compact topological groups.

It will turn out that certain results can be formulated for general transforms,
while others take advantage of the special structure of the underlying space.

5.1 Results for General Transforms

(SecT) This section covers the necessary results about general transforms.
The applications except for Rd will follow later. We start from the general
setting and add the specific details later.
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5.1.1 General Transforms

(SecGTR) Here we formulate the general notions that apply to all kinds of
transforms that we consider later. The setting is general enough to allow
generalized transforms in addition to the classical ones. This turns out to
be absolutely necessary even in the simple case of Fourier transforms on IRd.
For this reason we do not rely on other sources on transforms.

Assume that our basic space G with positive definite bilinear form (·, ·)Φ and
nullspace P is a space of real-valued functions on some domain Ω. Forget
about Φ,G, and P for a moment, and concentrate on Ω.

Assumption 5.1.1 (TAss1) For a specific space S of real-valued test func-
tions on some domain Ω there is a linear and injective transform mapping

g 7→ ĝ : S → L2,σ(D)

whose values are complex-valued functions on some domain D that carries a
measure σ such that the space

L2,σ(D) :=
{
f : D → C :

∫
D
|f |2dσ <∞

}
is well-defined and a Hilbert space over C with inner product

(u, v)L2,σ(D) :=
∫
D
uvdσ for all u, v ∈ L2,σ(D).

In particular, the measure σ can be Lebesgue measure on D = IRd for
the classical multivariate Fourier transform, or Haar measure on a locally
compact topological group, or plain summation for series transforms, e.g.:
D = ZZd for Fourier series on Ω = [0, 2π]d. Note that the transform domain
D and its measure σ are independent of the functions Φ that we are going
to consider, but they will crucially depend on Ω. We shall often write (·, ·)2

as shorthand for the above inner product, and we use the phrase almost
everywhere to stand for “on D except for a set of σ-measure zero”.
Assumption 5.1.1 (TAss1) is usually satisfied by proper definition of D, σ,
and the transform mapping. Injectivity of the latter is often proved by an
inverse transform.

Assumption 5.1.2 (TAss2) The space L2,σ(D) contains the image of the
space S of test functions under the transform mapping as a dense subspace
and coincides with its closure under the inner product (·, ·)L2,σ(D).

This makes sure that the test function space S is rich enough to generate all
of L2,σ(D) by continuity arguments acting on transforms.
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Assumption 5.1.3 (TAss3) There is a 1-1 correspondence between L2

spaces on Ω and D in the sense that there is a measure ω on Ω such that the
spaces L2,σ(D) and L2,ω(Ω) are isometrically isomorphic under the transform
mapping:

(Pars)

(f, g)L2,ωΩ :=
∫

Ω
fgdω = (f̂ , ĝ)L2,σ(D). (5.1.4)

Identities like (5.1.4, Pars) are usually called Parseval’s equation. Of
course, one could use the structure on L2,σ(D) to define an inner product for
functions on Ω by using (5.1.4, Pars) without the representation via integrals
as a definition. Thus the actual meaning of Assumption 5.1.3 (TAss3) is
that this abstract inner product can be respresented as a standard L2 inner
product.

5.1.2 Spaces Induced by Basis Functions

We restrict ourselves to basis functions Φ that satisfy

Assumption 5.1.5 (PFTAss1) The conditionally positive definite function
Φ : Ω×Ω→ IR has an associated real-valued nonnegative function Φ̂ which
is defined and positive almost everywhere on the transform domain D.

For reasons to become apparent later, we do not require Φ̂ to be the image
of Φ under the transform mapping, since we shall encounter cases where Φ
is not in the domain of the transform. One should rather consider (Φ̂)−1 as
a weight function on D. But there will also be cases where actually Φ̂ is the
transform of Φ, thus the notation. The relation between Φ and Φ̂ will be
clarified after introducing some additional notation.

We use (Φ̂)−1 as a weight function to define the operator

LΦ : g 7→ ĝ√
Φ̂
.

To turn it into a continuous map with image in L2,σ(D), we restrict its domain
to the subspace

SΦ := {u ∈ S : LΦu ∈ L2,σ(D)}
of the space S of test functions on D. We now can define an inner product

(PTIP)

(f, g)Φ =
∫
D
f̂(Φ̂)−1ĝdσ (5.1.6)
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on all f, g ∈ SΦ.

We are now ready to link Φ̂ to Φ and its native space G = P + F by the
requirement

Assumption 5.1.7 (PTAss2) The closure of SΦ under the inner product
(5.1.6, PTIP) coincides with the Hilbert space F .

Then the mapping LΦ can be identified with its continuous extension to all
of F , and it can be further extended to G by defining it as being zero on P .
The image of F under LΦ is a closed Hilbert subspace of L2,σ(D), and we
shall require some additional work in special cases to prove

Assumption 5.1.8 (PTAss3) The mapping
(LSurj)

LΦ : G → L2,σ(D) (5.1.9)

as the canonical extension of

LΦ(g) :=
ĝ√
Φ̂

for g ∈ SΦ is surjective.

The extension allows to define a generalized transform on the space G via

ĝ :=

√
Φ̂LΦ(g),

and these are by definition in the weighted L2 space

L
2,σ,1/Φ̂

(D) :=

{
u :

∫
D

|u(ω)|2

Φ̂(ω)
dσ(ω) <∞

}
.

5.2 Theory on the Torus using Fourier Series

5.3 Theory on Spheres using Expansions

5.4 Lower Bounds for Eigenvalues

(SecLBE) Here we proceed to prove lower bounds of the form (3.4.16,
GBound) for the smallest eigenvalue of the matrix occurring in optimal
recovery problems with Lagrange data. We had to postpone them until
now, because they require transforms.
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5.5 Generalizations of Results Using Transforms

6 Theory on Grids

Using Fourier transforms, we treat the case of gridded data hZZd here.

6.1 Strang-Fix Theory

6.2 Application to Radial Basis Functions

6.3 Shift Invariant Spaces

7 Construction and Characterization of Pos-

itive Definite Functions

(SecCCPD) This section is intended to give the proofs of conditional positive
definiteness of the classical radial basis functions. We include a toolbox
of operators on radial functions that allow the construction of compactly
supported positive definite functions.

7.1 General Construction Techniques

(SecGCT)

7.2 Construction of Radial Functions on IRd

7.2.1 Gaussians

(SecPDG)

7.2.2 Nonexistence of CS Functions for All Dimensions

(NECSAlld)

7.3 Positive Definite Functions on Topological Groups

7.4 Positive Definite Zonal Functions on Spheres

8 Special Algorithms

(SecSA) This section contains some additional techniques that may be useful
for the numerical solution of multivariate recovery problems.
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8.1 Reduction of Enlarged System, Method 1

(Red1) Consider the enlarged system (1.7.3, BDef) and perform a partial
Gaussian elimination algorithm on the matrix P with row interchanges. The
result can be written in the form

LPΠ =

(
U
0

)
, L =

(
L11 0
L21 E

)

with nonsingular lower triangular matrices L and L11 of size M ×M and
q× q, respectively, with an M ×M permutation matrix Π and a nonsingular
q × q upper triangular matrix U , while L21 is some M × q matrix and E is
the identity matrix. Now write α as a vector

(split1)

α = LTβ =

(
LT11 LT21

0 E

)(
β(1)

β(2)

)
=

(
LT11β

(1) + LT21β
(2)

β(2)

)
, (8.1.1)

again using a split of an M -vector into a q-vector followed by an (M − q)-
vector. Ignoring the details of such obvious splits from now on, we evaluate

0 = ΠTP Tα = ΠTP TLTβ = UTβ(1) + 0

and get β(1) = 0. Now we split the system LALTβ +LPγ = Lf in the same
way to get (

A11 A12

A21 A22

)(
0
β(2)

)
+

(
U
0

)
δ =

(
g(1)

g(2)

)
introducing the vector δ via γ = Πδ. This decomposes into two systems

A22β
(2) = g(2), A12β

(2) + Uδ = g(1)

that can be solved for β(2) and δ, respectively. From these it is easy to
calculate α and γ.

To see the positive definiteness of the matrix A22, observe that

(β(2))TA22β
(2) =

(
0
β(2)

)T
LALT

(
0
β(2)

)

holds for all β(2) ∈ IRM−q, and all α with (1.6.3, CPDef) have a unique split
in the form (8.1.1, split1). Thus A22 defines a positive definite quadratic
form on RM−q, and it must be a positive definite matrix.

To calculate the numerical effort, we now explicitly write down the algorithm:
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1. Perform q Gaussian transformations on rows of P with pivoting. This
requires O(Mq2) operations and generates the matrices Π, U , L11, and
L21. The latter three can be stored over P , and Π requires an integer
array of length q for keeping track of row permutations.

2. Calculate the submatrices Aik of LALT by applying the Gaussian trans-
formations stored in L to A row- and columnwise. These are q trans-
formations of M -vectors each, and the overall effort will be O(M2q).
Note that this operation will cause fill-in, if the original matrix was
sparse.

3. Calculate Lf and split it into g(1) and g(2). Using the special form of
L again, this amounts to O(Mq) operations.

4. Solve the positive definite (M − q)× (M − q) system A22β
(2) = g(2) by

your favourite method. We shall comment on such problems for uncon-
ditionally positive definite functions later in section 2.3 (CompEffort).
Its computational complexity does not enter into the complexity of the
transformation we consider here.

5. Now solve A12β
(2) + Uδ = g(1) for δ. Using the upper triangular

structure of U , the computational effort is O(Mq + q2) for forming
the system and solving it.

6. Backpermutation of elements of δ yields γ at O(q) cost.

7. Finally, α is an extension of β(2) by the q components of the vector
LT21β

(2), and these can be calculated by O(Mq2) operations.

Since we started with a conditionally positive definite function of positive
order m, the increase of Φ towards infinity leads to a matrix A that shows
a more or less strong increase of elements when moving away from the main
diagonal. After the reduction the resulting matrix behaves like one generated
by a positive definite function (this is actually provable for the reduction
method of the next section). Thus it usually shows off-diagonal decay, and
numerical experiments indicate some improvement of the condition. Thus
there is some hope that variations of these reduction methods can possibly
be turned into efficient preconditioning techniques.

8.2 Reduction of Enlarged System, Method 2

(Red2) Again, we consider the enlarged system (1.7.3, BDef), but now we
perform q Householder transformations on P T with column pivoting. This
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means a reordering of the points in X = {x1, . . . , xM} and transition to a
new basis in IP d

m. In linear algebra terms we end up with a decomposition
(Dec2)

U−1QP TΠ = (E, S) (8.2.1)

with a nonsingular upper triangular q × q matrix U , an orthogonal q × q
matrix Q, an M ×M permutation matrix Π and a plain q× (M − q) matrix
S. Note that the Householder transformations first produce QP TΠ = (U, ∗),
but we left-multiply this with U−1 to get (8.2.1, Dec2).

Now we permute and split α by
(split3)

α = Πβ, β =

(
β(1)

β(2)

)
(8.2.2)

into a q-vector followed by an (M − q)-vector. Then we evaluate

0 = U−1QP Tα = U−1QP TΠΠ−1α = (E, S)

(
β(1)

β(2)

)

and get β(1) = −Sβ(2). Now we split the system ΠTAΠβ + ΠTPγ = ΠTf to
get (

A11 A12

A21 A22

)(
β(1)

β(2)

)
+

(
E
ST

)
δ =

(
g(1)

g(2)

)

introducing the vector δ = UTQγ. This decomposes into two systems

A11β
(1) + A12β

(2) + δ = g(1)

A21β
(1) + A22β

(2) + ST δ = g(2)

and we solve the first for δ by
(DeltaSys)

δ = g(1) − A11β
(1) − A12β

(2) = g(1) + (A11S − A12)β(2). (8.2.3)

Putting this with β(1) = −Sβ(2) into the second yields a symmetric (M −
q)× (M − q) system

(RedSys3)(
A22 + STA11S − STA12 − A21S

)
β(2) = g(2) − STg(1) (8.2.4)
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that can be solved for β(2). To see the positive definiteness of the matrix
(8.2.4, RedSys3), observe that

(β(2))T
(
A22 + STA11S − STA12 − A21S

)
β(2) = βTΠTAΠβ = αTAα

holds for all β(2) ∈ IRM−q, and all α with (1.6.3, CPDef) have a unique split
in the form (8.2.2, split3) with β(1) = −Sβ(2). In 3.3.2 (PhiNormalization)
we shall see that this matrix can be written in the form AY,Ψ for a set Y of
M − q points and a function Ψ that is unconditionally positive definite on
IRd \ (X \ Y )..

Let us now explicitly write down the algorithm:

1. Perform q Householder transformations on P T with pivoting by column
permutation of P T . This requires O(Mq2) operations and generates
the matrices Π, U , and US. The latter two can be stored over P T ,
and Π requires an integer array of length M for keeping track of point
permutations.

2. Solve for S by backward substitution, using U . This again requires
O(Mq2) operations and generates S, which can be stored over part of
P .

3. Generate the submatrices Aik of ΠTAΠ by applying the permutations
defined by Π to A row- and columnwise. This requires 2M swaps of M -
vectors, and the overall effort will be O(M2). Note that this operation
can be avoided by using indirect indexing in later steps, but be aware
of the fact that indirect indexing spoils the positive effect of cache
memory.

4. Permute the right-hand side of the system and split it into g(1) and
g(2). This amounts to O(M) operations, but is unnecessary if indirect
indexing is implemented.

5. The bulk of work in this reduction method lies in forming the positive
definite matrix

A22 + STA11S − STA12 − A21S,

and it is of order O(M2q).

6. Now solve the positive definite (M − q) × (M − q) system (8.2.4,
RedSys3) for β(2) by your favourite method. We considered such prob-
lems for unconditionally positive definite functions in section 2.3 (Com-
pEffort). Its computational complexity does not enter into the com-
plexity of the transformation we describe here.
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7. Now form β(1) = −Sβ(2) with O(M2q) operations and

8. use (8.2.3, DeltaSys) to calculate δ with O(Mq2) operations. The
solution vector α just is a permuted version of β, but the calculation
of γ requires solution of the system UTQγ = δ in two steps:

9. Calculate Qγ from δ by backward substitution with O(q2) operations,
and

10. form γ = QT (Qγ) by premultiplication of Qγ with QT with O(q3)
operations. Since M ≥ q follows from IP d

m-nongegeneracy of X =
{x1, . . . , xM}, this is at most an O(Mq2) effort.

9 Computational Geometry Techniques

(SecCGT) This section contains algorithms from Computational Geometry
that are useful for solving scattered data problems in the the large. The
main topic will be the k-nearest neighbor problem and related query
problems.

9.1 Voronoi Diagrams

(SecVor)

10 Appendix

10.1 Basis Functions

(SecBF) Here we try to give a complete list (up to this date) of the avail-
able conditionally positive definite functions with their transforms and their
recursion formulas. Proofs are either in the main text or in section 10.4
(SecSFT) of the appendix.

10.2 MATLAB routines

Here we provide the MATLAB sources required to do the examples of section
2.5 (SecExamples).
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φ(r) Parameters m
rβ β > 0, β /∈ 2IN m ≥ dβ/2e

rβ log r β > 0, β ∈ 2IN m > β/2
(r2 + c2)β/2 β > 0, β /∈ 2IN m ≥ dβ/2e

Table 7: Conditionally Positive Definite Functions (TCPDFct2)

φ(r) Parameters Smoothness Dimension Name/Reference

e−βr
2

β > 0 C∞(IRd) d <∞ Gaussian
(r2 + c2)β/2 β < 0 C∞(IRd) d <∞ inv. Multiquadric
rνKν(r) ν > 0 Cbνc d <∞ Sobolev spline

(1− r)2
+(2 + r) C0 d ≤ 3 Wu [?](wu:94-1)

(1− r)4
+(1 + 4r) C2 d ≤ 3 Wendland [30](wendland:95-1)

Table 8: Unconditionally Positive Definite Functions (TPDFct2)

10.3 Hilbert Space Basics

(SecHSB) This is intended as a short tutorial on Hilbert spaces as required
in Section 3 (SecGT). We only require fundamentals on linear spaces, bilinear
forms, and norms. If a reader has problems with any of the stated facts below,
it is time to go back to an introductory course on Calculus and Numerical
Analysis.

Definition 10.3.1 (DefPHS) A set H and a mapping (·, ·)H : H×H → IR
form a pre-Hilbert space over IR, if the following holds:

1. H is a vector space over IR.

2. (·, ·)H is a symmetric positive definite bilinear form.

A symmetric positive bilinear form as (·, ·)H : H ×H → IR is often called
an inner product on H. Then

(NormDef)

‖x‖2
H := (x, x)H, x ∈ H (10.3.2)

defines a norm on H, and we assume all readers to be familiar with this
notion. Sometimes, we shall weaken the assumptions on (·, ·)H and only
ask for symmetry and positive semidefiniteness. Even in this more general
situation, we have the Cauchy-Schwarz inequality

|(u, v)H| ≤ |u|H|v|H
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for all u, v ∈ H, where we use the notation |x|2H := (x, x)H to denote a
seminorm instead of a norm as in (10.3.2, NormDef). To prove the Cauchy-
Schwarz inequality as a warm-up, just consider the quadratic function

ϕ(t) := |u+ tv|2H = |u|2H + 2t(u, v)H + t2|v|2H.

It must be nonnegative, and thus it has none or a double real zero. This
property is satisfied for a general function ϕ(t) = at2 + 2bt + c, iff b2 ≤ ac
holds. But this is the square of the Cauchy-Schwarz inequality.

For completeness, we recall some basics from normed linear spaces:

1. A sequence {un}n∈IN ⊂ N of a normed linear space N with norm ‖ ·‖N
is a zero sequence in N , if the sequence {‖un‖N}n∈IN converges to
zero in IR.

2. A sequence {un}n∈IN ⊂ N is a convergent sequence in N with limit
u, if the sequence {un − u}n is a zero sequence.

3. A subspace M of N is a closed subspace, if for every convergent
sequence {un}n∈IN ⊂ M ⊂ N with limit u one can conclude that the
limit u also belongs to M.

4. The normed linear space N is complete or a Banach space, if every
sequence which is a Cauchy sequence in the norm ‖ · ‖V is necessarily
convergent in V .

5. A complete normed linear space is closed, since each convergent se-
quence is a Cauchy sequence.

6. A subset M of a normed linear space N is dense, if each element of
N can be written as a limit of a convergent sequence from M.

Now we add some simple facts about pre-Hilbert spaces:

1. A mapping (or operator) A : H → N with values in a normed linear
space N with norm ‖ · ‖N is a continuous mapping or a bounded
mapping, if there is a constant C such that

‖Ax‖N ≤ C‖x‖H

holds for all x ∈ H.
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2. The mapping A then has an operator norm

‖A‖H,N := sup
x∈H\{0}

‖Ax‖N
‖x‖H

≤ C

and the bound
‖Ax‖N ≤ ‖A‖H,N‖x‖H

is best possible.

3. Two subspaces U , V of a pre-Hilbert space are orthogonal, if all
vectors u ∈ U , v ∈ V are orthogonal, i.e.: (u, v)H = 0.

Definition 10.3.3 An element u∗ of a subspaceM of a normed linear space
N is a best approximation to a given element u ∈ N , if

‖u− u∗‖N = sup
v∈M
‖u− v‖N =: EM(u).

Theorem 10.3.4 (BAT) An element u∗ of a subspace M of a pre-Hilbert
space H is a best approximation to a given element u ∈ H, iff the variational
identity

(EqVar)

(u− u∗, v)H = 0 for all v ∈M (10.3.5)

holds. If it exists, the best approximation is unique. If M is finite-
dimensional and spanned by linearly independent elements u1 . . . , uM , then
the coefficients α∗ of the representation

u∗ =
M∑
j=1

α∗juj

are solutions of the normal equations

M∑
j=1

α∗j (uj, uk)H = (u, uk)H, 1 ≤ k ≤M,

and the symmetric and positive definite matrix with entries (uj, uk)H is called
a Gram matrix.

Proof: Let u∗ be a best approximation to u. Then consider an arbitrary
v ∈M and form the quadratic function

uv(α) := ‖u− u∗ + αv‖2
H = ‖u− u∗‖2

H + 2α(u− u∗, v)H + α2‖v‖2
H
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whose minimum must be attained at α = 0. This implies (u − u∗, v)H = 0.
Conversely, assume (10.3.5, EqVar) and write any other element v ∈ M as
v = u∗+1·(v−u∗). Then (10.3.5, EqVar) implies that the quadratic function
uu∗−v is minimal at α = 0, proving uu∗−v(1) = ‖u − v‖H ≥ uu∗−v(0) =
‖u − u∗‖H. If u∗ and u∗∗ are two best approximations from M to u, then
we can subtract the two variational identities (u− u∗, v)H − (u− u∗∗, v)H =
(u∗∗−u∗, v)H = 0 for all v ∈M and insert v = u∗∗−u∗ to get u∗∗ = u∗. The
third assertion is a specialization of (10.3.5, EqVar). 2

Corollary 10.3.6 The first statement of Theorem 10.3.4 (BAT) holds also
in the case of a positive semidefinite bilinear form. The Gram matrix in the
finite-dimensional case now is only positive semidefinite. 2

Corollary 10.3.7 (BAC) Let λ1, . . . , λM be linear functionals on a pre-
Hilbert space H and let some u ∈ H be given. An element u∗ of H solves the
problem

‖u∗‖H = inf
v ∈ H

λj(v) = λj(u)
1 ≤ j ≤M

‖v‖H,

iff the variational identity

(u∗, v)H = 0 for all v ∈ H with λj(v) = 0, 1 ≤ j ≤M.

holds, or iff there are real numbers α1, . . . , αM such that

(u∗, v)H =
M∑
j=1

αjλj(v) for all v ∈ H.

Proof: Consider the subspace

M = { v ∈ H : λj(v) = 0, 1 ≤ j ≤M}

and reformulate the problem by writing any v ∈ H with λj(v) = λj(u), 1 ≤
j ≤ M as v = u − w for w ∈ M. Then we have a problem of best
approximation to u from M and can simply use Theorem 10.3.4 (BAT)
to prove the first assertion. We then have to prove that the first variational
identity implies the second. But this follows from a standard linear algebra
argument that we include for completeness as the next lemma. 2
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Lemma 10.3.8 If A : X → Y and B : X → Z are linear maps between
linear spaces, and if B vanishes on the kernel kerA of A, then B factorizes
over A(X), i.e.: there is a map C : A(X)→ Z such that B = C ◦ A. If Z
is normed and if Y is finite-dimensional, then C is continuous.

Proof: There is an isomorphism D : A(X)→ X/ kerA, and one can define
B̃ : A/ kerA→ Z by B̃(x+ kerA) := B(x) because B( kerA) = {0}. Then
C := B̃ ◦D does the job, since

C(A(x)) = B̃(D(A(x))) = B̃(x+ kerA) = B(x)

for all x ∈ X. If Y is finite-dimensional, the isomorphic spaces A(X) ⊆ Y and
X/ kerA must also be finite-dimensional. Since all linear mappings defined
on finite-dimensional linear spaces with values in normed linear spaces are
continuous, we are finished. 2

So far, Theorem 10.3.4 (BAT) does not imply existence of best approxima-
tions from subspaces of infinite dimension. It just characterizes them. To
get existence, we need that certain nice sequences actually have limits:

Definition 10.3.9 (DefHS) A pre-Hilbert space H with inner product (·, ·)H
is a Hilbert space over IR, if H is complete under the norm ‖ · ‖H, i.e.:
as a normed linear space.

We now prove the crucial projection theorem in Hilbert spaces:

Theorem 10.3.10 (PTHS) If H is a Hilbert space with a closed subspace
M, then any element u ∈ H has a unique best approximation u∗M from M,
and the elements u∗M and u− u∗M are orthogonal. The map ΠM : H →M
with ΠM(u) := u∗M is linear, has norm one if M is nonzero, and is a
projector, i.e.: Π2

M = ΠM. If Id is the identity mapping, then Id−ΠM is
another projector, mapping H onto the orthogonal complement

M⊥ := { u ∈ H : (u, v)H = 0 for all v ∈M }.

of M. Finally, the decomposition

H =M+M⊥

is a direct and orthogonal sum of spaces.

Proof: The existence proof for approximations from finite-dimensional sub-
spaces is a consequence of Theorem 10.3.4 (BAT), and we postpone the
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general case for a moment. The orthogonality statement follows in general
from Theorem 10.3.4 (BAT), and it yields Pythagoras’ theorem in the form

‖u‖2
H = ‖u− u∗M‖2

H + ‖u∗‖2
H.

This in turn proves that both projectors have a norm not exceeding one. It
is easy to prove that αu∗M + βv∗M is a best approximation to αu+ βv for all
α, β ∈ IR and all u, v ∈ H, using the variational identity in Theorem 10.3.4
(BAT). To prove linearity of the projectors, we use uniqueness of the best
approximation, as follows from Theorem 10.3.4 (BAT). Finally, surjectivity
of the projectors is easily proven from the best approximation property of
their definition.

Thus we are left with the existence proof for the infinite-dimensional case.
The nonnegative real number EM(u) can be written as the limit of a de-
creasing sequence {‖u − vn‖H}n for certain elements vn ∈ M, because it is
defined as an infimum. Forming the subspaces

Mn := span {v1, . . . , vn} ⊆ M

and unique best approximations wn to u from Mn, we get

EM(u) ≤ ‖u− wn‖H ≤ ‖u− vn‖H,

such that the sequence {‖u− wn‖H}n converges to EM(u), too. We now fix
indices m ≥ n and use that (u − wm, wm − wn)H = 0 follows from the best
approximation property of wm. Then we have

‖u− wn‖2
H − ‖u− wm‖2

H = ‖u− wm + wm − wn‖2
H − ‖u− wm‖2

H
= ‖u− wm‖2

H + 2(u− wm, wm − wn)H
+‖wm − wn‖2

H − ‖u− wm‖2
H

= ‖wm − wn‖2
H,

and since the sequence {‖u − wn‖2
H}n is convergent and thus a Cauchy

sequence, we get that {wn}n ⊂M is a Cauchy sequence inM⊆ H. Now the
completeness of H assures the existence of a limit w∗ ∈ H of this sequence,
and since M was ssumed to be closed, the element w∗ must belong to M.
The above identity can be used to let m tend to infinity, and then we get

‖u− wn‖2
H − ‖u− w∗‖2

H = ‖w∗ − wn‖2
H.

This proves
EM(u) ≤ ‖u− w∗‖H ≤ ‖u− wn‖H,

and since the right-hand side converges to EM(u), the element w∗ must be
the best approximation to u. 2

We now proceed towards the completion theorem for pre-Hilbert spaces.
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Theorem 10.3.11 (HSCT) Let H be a pre-Hilbert space with inner product
(·, ·)H. Then there is a Hilbert space J and an isometric embedding J : H →
J such that the following is true:

1. J(H) is dense in J .

2. Any continuous mapping A : H → N with values in a Banach space
N has a unique continuous extension B : J → N such that B◦J = A.

Proof: We first form the space of all Cauchy sequences in H, which clearly
is a linear space over IR. Two such sequences are called equivalent, if their
difference is a sequence in H converging to zero. The space J now is
defined as the space of equivalence classes of Cauchy sequences in H modulo
zero sequences. These classes clearly form a vector space under the usual
operations on sequences. If we use an overstrike to stand for “class of”, we
write an element of J as {un}n for a Cauchy sequence {un}n ∈ H. Now it is
time to define an inner product

({un}n, {vn}n)J := lim
n→∞

(un, vn)H

on J and the embedding J via the constant Cauchy sequences

Ju := {u}n := {un = u}n

for each u ⊂ H. Then
(Ju, Jv)J = (u, v)H

makes sure that J is an isometry and injective. But we still have to show
that the inner product on J is well-defined and positive definite. If {un}n
and {vn}n are Cauchy sequences in H, then

|‖un‖H − ‖um‖H| ≤ ‖un − um‖H

implies that the sequences {‖un‖H}n and {‖vn‖H}n are Cauchy sequences in
IR, and thus convergent and bounded by constants Cu and Cv. But then

(un, vn)H − (um, vm)H = (un, vn)H − (un, vm)H − (um, vm)H + (un, vm)H
= (un, vn − vm)H − (um − un, vm)H
≤ Cu‖vn − vm‖H + Cv‖um − un‖H

proves that {(un, vn)H}n is a Cauchy sequence in IR and thus convergent.
Two representatives of a class {un}n differ just by a zero sequence that does
not affect the inner product’s value. The proof of definiteness again uses that
zero sequences represent zero in J . This finishes the proof of well-definedness
of the new inner product.
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Thus J is another pre-Hilbert space that contains an isometric image of H,
and we first want to prove that J(H) is dense in J . Let us take an element
{un}n ∈ J and use the fact that for each ε > 0 there is some K(ε) such that
for all n,m ≥ K(ε) we have

‖un − um‖H ≤ ε.

Now take m ≥ K(ε) and the fixed Cauchy sequence {um}n = J(um). Then

‖J(um)− {un}n‖J = lim
n→∞

‖um − un‖H ≤ ε

proves the density assertion.

We now proceed to prove completeness of J . To do this we have to form

a Cauchy sequence {{u(m)
n }n}m of equivalence classes {u(m)

n }n of Cauchy
sequences {u(m)

n }n ⊂ H. For each m ∈ IN we can use the density property
of H in J to find an element vm ∈ H such that

‖{u(m)
n }n − J(vm)‖J ≤ 1/m.

Due to

‖vn − vm‖H = ‖J(vn)− J(vm)‖J
≤ ‖J(vn)− {u(n)

n }n‖J+

+‖{u(n)
n }n − {u(m)

n }n‖J + ‖{u(m)
n }n − J(vm)‖J

→ 0

for n,m→∞, the sequence {vm}m is a Cauchy sequence in H. We now form

‖{u(k)
n }n − {vn}n‖J ≤ ‖{u(k)

n }n − J(vk)‖J + ‖J(vk)− {vn}n‖J
≤ 1/k + lim

n→∞
‖vk − vn‖H

→ 0

for k →∞, proving convergence towards {vn}n.

Now let A : H → N be a linear continuous mapping with values in a
complete normed linear space N . If {un}n is an element of J , we define the
extension B on {un}n by

(Bmapdef)

B({un}n) := lim
n→∞

A(un). (10.3.12)
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Since A is continuous, it is bounded and due to

‖A(um)− A(un)‖N ≤ ‖A‖‖um − un‖H

the sequence {Aun}n is a Cauchy sequence inN . But asN is a Banach space,
the sequence is convergent and (10.3.12, Bmapdef) is well-defined. Clearly
B ◦ J = A holds by definition. Any two such extensions must agree on the
dense subspace A(H) of J , and since they are continuous, they must agree
on all of J . 2We add a little application:

Lemma 10.3.13 If M is a dense subspace of a Hilbert space H, then the
closure of M is isometrically isomorphic to H.

Proof: The closure of M can be identified with a closed subspace N of H,
and we assert that N = H. To this end, decompose H into H = N + N⊥
and take an element u from N⊥. It must be orthogonal to all elements from
M, and by continuity of the functional v 7→ (u, v)H it must be orthogonal to
all of H. Thus it must be zero. 2

We further need the Riesz representation theorem for continuous linear
functionals:

Theorem 10.3.14 (RieszT) Any continuous linear real-valued functional
λ on a Hilbert space H can be written as

(RieszRep)

λ = (·, gλ)H (10.3.15)

with a unique element gλ ∈ H. The map λ 7→ gλ is an isometric isomorphism
between the dual Hilbert space H∗ of H, consisting of all continuous linear
real-valued functionals on H, and H itself.

Proof: If λ = 0, then gλ = 0 does the job and is unique. If λ 6= 0, the kernel
L of λ is not the full space H. It is, however, a closed linear subspace, and
thus there is some element hλ ∈ L⊥ with ‖hλ‖H = 1. Now for each u ∈ H
the element λ(u)hλ − λ(hλ)u must necessarily be in L and thus orthogonal
to hλ. This means

0 = (hλ, λ(u)hλ − λ(hλ)u)H,
λ(u)(hλ, hλ)H = λ(hλ)(u, hλ)H,

λ(u) = (u, λ(hλ)hλ)H.

The norm of λ is bounded by

‖λ‖H∗ := sup
u∈H\{0}

|λ(u)|
‖u‖H

≤ |λ(hλ)|
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due to Cauchy-Schwarz, but using u = hλ in the definition of the norm yields
equality. Since we set gλ := λ(hλ)hλ, we get ‖λ‖H∗ = ‖gλ‖H. Uniqueness
of gλ satisfying (10.3.15, RieszRep) is easy to prove, and equally easy is the
proof of injectivity and surjectivity of the map λ 7→ gλ. 2

10.4 Special Functions and Transforms

(SecSFT) This is intended as a reference and tutorial for classical formulas
involving special functions (e.g.: Bessel functions) and their transforms.

The Gamma function is defined by
(GammaDef)

Γ(z) =
∫ ∞

0
tz−1e−tdt. (10.4.1)

The surface area of the d− 1-dimensional sphere in IRd for d > 1 is
(VolS)

vol (Sd−1) = 2π(d−1)/2/Γ((d− 1)/2). (10.4.2)

The Bessel function Kν of third kind (alias Mcdonald function) is
(KnuDef)

Kν(z) =
π1/2(z/2)ν

Γ(ν + 1/2)

∫ ∞
1

e−zt(t2 − 1)ν−1/2dt (10.4.3)

for | arg z| < π/2 and <ν > −1/2, and its asymptotics near zero is
(KnuAsyZero)

Kν(z) =
(z/2)−ν

Γ(ν)
+ O(1), (10.4.4)

while it behaves like
(KnuAsyInf)

Kν(z) =

√
π√
2z
e−z(1 +O(z−1)), (10.4.5)

near infinity.

10.5 Necessary Results from Real Analysis

Here we collect some of the basic material on Lebesgue integration, Sobolev
spaces, distributions, pseudodifferential operators, and partial differential
equations.
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10.5.1 Lebesgue Integration

(SecLI)

10.5.2 L2 spaces

Lemma 10.5.1 (LemContShift) The shift operator Sz : f(·) 7→ f(· − z)
is a continuous function of z near zero in the following sense: for each given
u ∈ L2(IRd) and each given ε > 0 there is some δ > 0 such that

‖Sz(u)− u‖L2(IRd) ≤ ε

for all ‖z‖2 ≤ δ.

Proof: to be supplied later....

We now want to prove that the space S of tempered test functions is dense
in L2(IRd). For this, we have to study functions like (4.1.5, deltaschar) in
some more detail. They are in S for all positive values of ε, and Lemma 4.1.6
(LemRepro) tells us that the operation

f 7→Mε(f) :=
∫
IRd
f(y)ϕ(ε, · − y)dy

maps each continuous L1 function f to a ”mollified” function Mε(f) such
that

lim
ε→0

Mε(f)(x) = f(x)

uniformly on compact subsets of IRd.

It is common to replace the Gaussian in (4.1.8, deltarep) by an infinitely
differentiable function with compact support, e.g.

(Friedmoll)

ϕ(ε, x) =

{
c(ε) exp(−1/(ε2 − ‖x‖2

2)) ‖x‖2 < ε
0 ‖x‖2 ≥ ε

}
(10.5.2)

where the constant c(ε) is such that∫
IRd
ϕ(ε, x)dx = 1

holds for all ε > 0. This Friedrich’s mollifier can also be used in the
definition of Mε. It has the advantage that Lemma 4.1.6 (LemRepro) holds
for more general functions, i.e.: for functions which are in L1 only locally.
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We now want to study the action of Mε on L2 functions. Let u ∈ L2(IRd) be
given, and apply the Cauchy-Schwarz inequality to

Mε(f)(x) =
∫
IRd

(f(y)
√
ϕ(ε, x− y))

√
ϕ(ε, x− y)dy

to get

|Mε(f)(x)|2 ≤
∫
IRd |f(y)|2ϕ(ε, x− y)dy

∫
IRd ϕ(ε, x− y)dy

=
∫
IRd |f(y)|2ϕ(ε, x− y)dy

and ∫
IRd
|Mε(f)(x)|2dx ≤

∫
IRd

∫
IRd
|f(y)|2ϕ(ε, z)dydz =

∫
IRd
|f(y)|2dy

such that Mε has norm less than or equal to one in the L2 norm. It is even
more simple to prove the identity

(f,Mεg)L2(Rd) = (Mεf, g)L2(Rd)

for all f, g ∈ L2(IRd) by looking at the integrals. Here, we used the Fubini
theorem on IRd which requires some care, but there are no problems because
everything can either be done with a Friedrich’s mollifier, or be done on
sufficiently large compact sets first, letting the sets tend to IRd later.

We now use a Friedrich’s mollifier to study the L2 error of the mollifica-
tion. This is very similar to the arguments we already know. The error is
representable pointwise as

f(x)−Mε(f)(x) =
∫
IRd

(f(x)− f(y))ϕ(ε, x− y)dy

and we can use the Cauchy-Schwarz inequality to get

|f(x)−Mε(f)(x)|2 ≤
∫
‖x−y‖2<ε

|f(x)− f(y)|2ϕ(ε, x− y)dy.

This can be integrated to get∫
IRd
|f(x)−Mε(f)(x)|2dx ≤

∫
‖z‖2<ε

ϕ(ε, z)
∫
IRd
|f(y + z)− f(y)|2dydz,

and we use the continuity of the shift operator as proven in Lemma 10.5.1
(LemContShift) to make this as small as we want by picking a suitably small
ε. This shows

lim
ε→0
‖f −Mε(f)‖L2(IRd) = 0

and proves

Lemma 10.5.3 (FTD) The space S of test functions is dense in L2(IRd).
2



REFERENCES 125

10.5.3 Sobolev Spaces

(SecSob) This section contains definitions of Sobolev spaces and proves
Sobolev’s embedding theorems.
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