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1 Introduction

This article can be seen as an extension of Martin Buhmann’s presentation of
radial basis functions [30] in this series. But we shall take a somewhat wider
view and deal with kernels in general, focusing on their recent applications in
areas like machine learning and meshless methods for solving partial differential
equations.

In their simplest form, kernels may be viewed as bell-shaped functions like
Gaussians. They can be shifted around, dilated, and superimposed with weights
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in order to form very flexible spaces of multivariate functions having useful prop-
erties. The literature presents them under various names in contexts of different
numerical techniques, for instance as radial basis functions, generalized finite el-
ements, shape functions or even particles. They are useful both as test functions
and trial functions in certain meshless methods for solving partial differential
equations, and they arise naturally as covariance kernels in probabilistic mod-
els. Kernels replace radial basis functions because of their greater generality
and wider applicability. In case of learning methods, sigmoidal functions within
neural networks were successfully superseded by radial basis functions, but now
they are both replaced by kernel machines1 to implement the most successful
algorithms for Machine Learning [81, 84]. Even the term Kernel Engineering
has been coined recently, because efficient learning algorithms require specially
tailored application-dependent kernels.

With this slightly chaotic background in mind, we survey the major applica-
tion areas while focusing on a few central issues that can serve as guidelines for
practical work with kernels. Section 2 (SecKer) starts with a general definition
of kernels and provides a short account of their properties. The main reasons
for using kernels at all will be described in Section 3 (SecOR) starting from
their ability to recover functions optimally from given unstructured data. At
this point, the connections between kernel methods for interpolation, approxi-
mation, learning, pattern recognition, and PDE solving become apparent. The
probabilistic aspects of kernel techniques follow in Section 4 (SecKiPM), while
practical guidelines for constructing new kernels follow in Section 5 (SecKC).
Special application-oriented kernels are postponed to Section 6 (SecSK) to avoid
too much detail at the beginning.

Since one of the major features of kernels is to generate spaces of trial func-
tions with excellent approximation properties, we devote Section 7 (SecAK) to
give a short account of the current results concerning such questions. Together
with strategies to handle large and ill-conditioned systems (Section 8 (SecHLS)),
these results are of importance to the applications that follow later.

After a short interlude on kernels on spheres in Section 9 (SecKoS) we start
our survey of applications in Section 10 (SecAKI) by looking at interpolation
problems first. These take advantage of the abilities of kernels to handle un-
structured Birkhoff-type data while producing solutions of arbitrary smoothness
and high accuracy. Then we review kernels in modern learning algorithms, but
we can keep this section short because there are good books on the subject.

Section 12 (SecMM) surveys meshless methods [25] for solving partial differen-
tial equations. It describes the different techniques currently sailing under this
flag, and it points out where and how kernels occur there. Due to an existing
survey [9] in this series, we keep the generalized finite element method short
here, but we incorporate meshless local Petrov-Galerkin techniques [3].

The final two sections are then focusing on purely kernel-based meshless
methods. We treat applications of symmetric and unsymmetric collocation, of
kernels providing fundamental and particular solutions, and provide the state-

1http://www.kernel-machines.org
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of-the-art of their mathematical foundation.
Altogether, we want to keep this survey digestible for the non-expert and

casual reader who wants to know roughly what happened so far in the area of
application-oriented kernel techniques. This is why we omit most of the technical
details and focus on the basic principles. Consequently, we have to refer as much
as possible to background reading for proofs and extensions. Fortunately, there
are two recent books [31, 95] which contain the core of the underlying general
mathematics for kernels and radial basis functions. For kernels in learning
theory, we already cited two other books [81, 84] providing further reading. If
we omit pointers to proofs, these four books will usually contain what is needed.

Current books and survey articles in the area of meshless methods are fo-
cusing either on certain classes of methods or on theory or on applications. We
shall cite them whenever they come handy, but it is not advisable for the reader
to use just one or two of them. Likewise, the list of references cannot contain
all available papers on all possible kernel applications. This forces us to select
a very small subset, and our main selection criterion is how a certain reference
fits into the current line of argument at a certain place of this survey. Incorpo-
ration or omission of a certain publication does not express our opinion on its
importance in general.

2 Kernels

(SecKer)

Definition 2.1 (DefKer) A kernel is a function of the form

K : Ω× Ω → R

where Ω can be an arbitrary nonempty set.

Some readers may consider this as being far too general. However, in the context
of learning algorithms, the set Ω defines the possible learning inputs. Thus Ω
should be general enough to allow Shakespeare texts or X-ray images, i.e. Ω
should better have no predefined structure at all. Thus the kernels occurring in
machine learning are extremely general, but still they take a special form which
can be tailored to meet the demands of applications. We shall explain the recipe
for their determination npw.

First, before a kernel is available, an application-dependent feature map Φ :
Ω → K with values in a Hilbert space K is defined. It should provide for each
x ∈ Ω a large collection Φ(x) of features of x which are characteristic for x and
which live in the Hilbert space K of high or even infinite dimension.

Guideline 2.2 (guifeamapstolin) Feature maps Ω → K allow to apply lin-
ear techniques in their range K, while their domain Ω is an unstructured set.
They should be chosen carefully in an application-dependent way, capturing the
essentials of elements of Ω.
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With a feature map Φ at hand, there is a kernel
eqkerler

K(x, y) := (Φ(x),Φ(y))K for all x, y ∈ Ω. (1)

In another important class of cases, the set Ω consists of random variables. Then
the covariance between two random variables x and y from Ω is a standard choice
of a kernel. These and other kernels arising in nondeterministic settings will be
the topic of Section 4 (SecKiPM). The connection to learning is obvious: two
learning inputs x and y from Ω should be very similar, iff (1, eqkerler) takes
large positive values. These examples already suggest

Definition 2.3 (DefKerSym) A kernel K is symmetric, if K(x, y) = K(y, x)
holds for all x, y ∈ Ω.

A kernel K on Ω defines a function K(·, y) for all fixed y ∈ Ω. This allows to
generate and manipulate spaces of functions on Ω via

eqk0

K0 := span {K(·, y) : y ∈ Ω}. (2)

For the learning theory case, the function K(·, y) = (Φ(·),Φ(y))K relates each
other input object to a fixed object y via its essential features. But in general
K0 just provides a handy linear space of trial functions on Ω which is extremely
useful for most applications of kernels, e.g. when Ω consists of texts or images.
For example, in meshless methods for solving partial differential equations, cer-
tain finite-dimensional subspaces of K0 are used as trial spaces to furnish good
approximations to the solutions.

In certain other cases, the set Ω carries a measure µ, and then, under rea-
sonable assumptions like f, K(y, ·) ∈ L2(Ω, µ), the generalized convolution

eqkerconv

K ∗Ω f :=

∫

Ω

f(x)K(·, x)dµ(x) (3)

defines an integral transform f 7→ K ∗Ω f which can be very useful. Note that
Fourier or Hankel transforms arise this way, and recall the rôle of the Dirichlet
kernel in Fourier analysis of univariate periodic functions. The above approach
to kernels via convolution works on locally compact topological groups using
Haar measure, but we do not want to pursue this detour into abstract harmonic
analysis too far. For space reasons, we also have to exclude complex-valued
kernels and all transform-type applications of kernels here, but it should be
pointed out that wavelets are special kernels of the above form, defining the
continuous wavelet transform this way.

Note that discretization of the integral in the convolution transform leads to
functions in the space K0 from (2, eqk0). Using kernels as trial functions can be
viewed as a discretized convolution. This is a very useful fact in the theoretical
analysis of kernel-based techniques.
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Guideline 2.4 (guikercontri) Kernels have two major application fields: they
generate convolutions and trial spaces. These two are related by discretization.

Another important aspect in all kernel-based techniques is the scaling problem.
If the kernel K in the convolution equation (3, eqkerconv) is a sharp nonneg-
ative spike with integral one, the convolution will reproduce f approximately,
and the distributional “delta kernel” will reproduce f exactly. This is theoret-
ically nice, but discretization will need a very fine spatial resolution. On the
other hand, convolution with a nonnegative smooth kernel of wide or infinite
support acts as a smoothing operator which will not have a good reproduction
quality. To control this tradeoff between approximation and smoothing, many
kernel applications involve a free scaling parameter, and it is a serious problem
to derive good strategies for its determination. The scaling problem will come
up at various places in this article.

For many applications, the space K0 needs more structure. In fact, it can
be turned into a Hilbert space via

Definition 2.5 (DefKerPD) A symmetric kernel K is positive (semi-) definite,
if for all finite subsets X := {x1, . . . , xN} of Ω the symmetric matrices AK,X

with entries K(xj , xk), 1 ≤ j, k ≤ N are positive (semi-) definite.

For a symmetric positive definite kernel K on Ω, the definition
eqKKK

(K(x, ·),K(y, ·))K = (K(·, x),K(·, y))K := K(x, y) for all x, y ∈ Ω (4)

of an inner product of two generators of K0 easily generalizes to an inner product
on all of K0 such that

eqKKnorm

∥∥∥∥∥∥

N∑

j=1

αjK(·, xj)

∥∥∥∥∥∥

2

K

:=

N∑

j,k=1

αjαkK(xj , xk) = αTAK,Xα (5)

defines a numerically accessible norm on K0 which allows to construct a native
Hilbert space

eqk

K := clos K0 (6)

as the completion of K0 under the above norm. In most cases, the space K is
much richer than K0 and does not seem to have any explicit connection to the
kernel it is generated from. For instance, Sobolev spaces K = W k

2 (R
d) with

k > d/2 result from the kernel
eqSobK

K(x, y) = ‖x− y‖k−d/2
2 Kk−d/2(‖x− y‖2) (7)
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where Kν is the Bessel function of third kind. Starting from (7, eqSobK) it is
not at all clear that a certain closure of the span of all translates of K generates
the Sobolev space W k

2 (R
d).

By construction, the spaces K and K0 have a nice structure now, and there
is a reproduction property

eqrepro

f(x) := (f,K(·, x))K for all f ∈ K, x ∈ Ω (8)

for all functions in K. At this point, we are on the classical grounds of reproduc-
ing kernel Hilbert spaces (RKHS) with a long history [2, 65, 7]. We shall deal
with conditionally positive definite kernels in Section 6 (SecSK).

Guideline 2.6 (guiposdefker) Positive definite kernels are reproducing all
functions from their associated native Hilbert space. On the trial space (2, eqk0)
of translated positive definite kernels, the Hilbert space norm can be numerically
calculated by plain kernel evaluations, without integration or derivatives. This
is particularly useful if the Hilbert space norm theoretically involves integration
and derivatives, e.g. in case of Sobolev spaces.

Guideline 2.7 (guiinvarker) If the set Ω has some additional geometric struc-
ture, kernels may take a simplified form, making them invariant under geometric
transformations on Ω.

For instance, kernels of the form

K(x− y) are translation-invariant on Abelian groups
K(xT y) are zonal on multivariate spheres

K(‖x− y‖2) are radial on Rd

with a slight abuse of notation. Radial kernels are also called radial basis func-
tions, and they are widely used due to their invariance under Euclidean (rigid-
body-) transformations in Rd. The most important example in the Gaussian
kernel

eqGauss

K(x, y) := exp(−‖x− y‖22) for all x, y ∈ Rd (9)

which is symmetric positive definite on Rd for all space dimensions, and which
naturally arises as a convolution kernel and a multivariate probability density.

In many applications, for instance in machine learning, the kernel value
K(x, y) increases with the “similarity” of x and y, like a correlation or a covari-
ance, and bell-shaped like the Gaussian. More precisely, any symmetric positive
definite kernel generates a distance metric d : Ω× Ω → [0,∞) via

eqdistmet

d2(x, y) := K(x, x)− 2K(x, y) +K(y, y) for all x, y ∈ Ω (10)

on a general set [82, 88], but this is not our major concern here, because we
want to focus on applications.
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Guideline 2.8 (guikermet) Symmetric positive definite kernels introduce some
kind of “geometry” on the underlying set Ω.

The art of kernel engineering is to find a kernel that nicely models similarity or
dissimilarity of two items x and y via K(x, y) for a given application.

3 Optimal Recovery

(SecOR) One of the key advantages of kernels is the following

Guideline 3.1 (guioptuse) Kernel-based methods can make optimal use of the
given information.

Results like this come up at various places in theory and applications, and they
have a common background linking them to the interesting field of information-
based complexity2 [90]. In a probabilistic context, Guideline 3.1 (guioptuse)
can be forged into an exact statement using Bayesian arguments, but we want
to keep things simple first and postpone details to Section 4 (SecKiPM).

3.1 Recovery From Unstructured Data

For illustration, we assume that we want to model a black-box transfer mecha-
nism

x
f7→ f(x)

...??????.... Bild...??????.....
that replies to an input x ∈ Ω by an output f(x) ∈ R. This is the same as the

reaction f(x) of a well-trained individual or machine to a given stimulus x given
to it. Finding a good response mechanism f can be called learning or black-box
modeling. If the output should take only a finite number of possible values,
this is pattern recognition or classification. We shall use the word “recovery
problem” to summarize all of these situations, which mathematically require
the determination of a function. But we want to stick to an application-oriented
view here.

At this point we do not have any further information on the model or
the intended reactions to the stimuli. But usually we have some examples
of “good behaviour” that can be used. These take the form of a sequence
(x1, y1), . . . , (xN , yN ) of unstructured training data, pairing inputs xj ∈ Ω with
their expected responses yj ∈ R. The recovery task now is to find a function f
such that

eqfapp

f(xj) ≈ yj , 1 ≤ j ≤ N (11)

and this is a standard interpolation or approximation problem, though posed
on an unstructured set Ω using unstructured data.

2http://www.ibc-research.org
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If we slightly change the meaning of the word “data”, we can try to find a
smooth function f such that

eqpoisson

(−∆f)(yj) ≈ ϕ(yj), 1 ≤ j ≤M
f(zk) ≈ ψ(zk), M + 1 ≤ k ≤ N

(12)

where y1, . . . , yM are points in a bounded domain Ω while zM+1, . . . , zN lie on
the boundary. This would hopefully provide an approximate solution f to the
Poisson problem

(−∆f)(y) ≈ ϕ(y), y ∈ Ω
f(z) ≈ ψ(z), z ∈ ∂Ω

for given functions ϕ on Ω and ψ on ∂Ω. Note that this collocation technique is
again a recovery problem for a function f from certain of its data, just replac-
ing point evaluations in (11, eqfapp) by evaluations of certain derivatives. In
general, one can replace (11, eqfapp) by

eqlapp

λj(f) ≈ yj , 1 ≤ j ≤ N (13)

for a set of given linear data functionals λ1, . . . , λN generalizing the point eval-
uation functionals δx1

, . . . , δxN
of (11, eqfapp). Tradition in Approximation

Theory would call this a recovery problem from Hermite-Birkhoff data, if the
data functionals are evaluations of derivatives at points. But there are much
more general functionals, e.g. the ones defining weak data via

λj(f) =

∫

Ω

∇T f · ∇vj

like in finite elements, using a test function vj . This way, finite element meth-
ods for solving linear partial differential equations can be written as recovery
problems (13, eqlapp).

For later sections of this article, the reader should keep in mind that suit-
able generalizations (13, eqlapp) of the recovery problem (11, eqfapp) lead to
methods for solving partial differential equations. We shall stick to the simple
form of (11, eqfapp) for a while, but when overlooking large parts of Numerical
Analysis, e.g. finite element techniques, we have to state

Guideline 3.2 (guirec) Many applications can be rephrased as recovery prob-
lems for functions from unstructured data.

3.2 Generalization

The resulting model function f should be such that it generalizes well, i.e. it
should give practically useful responses f(x) to new inputs x ∈ Ω. Furthermore,
it should be stable in the sense that small changes in the training data do not
change f too much. But these goals are in conflict with good reproduction of
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the training data. A highly stable but useless model would be f = 1, while
overfitting occurs if there is too much emphasis on data reproduction, leading
to unstable models with bad generalization properties.

Guideline 3.3 (guirepgendil) Recovery problems are subject to the reproduction-
generalization dilemma and need a careful balance between generalization and
stability properties on one hand and data reproduction quality on the other.

This is called the bias-variance dilemma under certain probabilistic hypotheses,
but it also occurs in deterministic settings.

Given a recovery problem as in (11, eqfapp), there is not enough information
to come up with a useful solution of the recovery problem. In particular, we
have no idea how to define f or from which space of functions to pick it from.
From a theoretical point of view, we are facing an ill-posed problem with plenty
of indistinguishable approximate solutions. From a practical point of view, all
mathematical a-priori assumptions on f are useless.

Instead, one should use additional application-dependent information about
the essentials of the inputs, e.g. define a feature map Φ : Ω → H like in (1,
eqkerler) taking an object x to an object Φ(x) in H containing all essential
features of x. With this additional information, we can define a kernel K using
(1, eqkerler), and we get a space K of functions on Ω via (2, eqk0) and (6, eqk).
Since K usually comes out to be rather large (see the example in (7, eqSobK)
for Sobolev spaces), this space serves as a natural reservoir to pick f from, and
if we have no other information, there is no other choice for a space defined on
all of Ω. Of course, the choice of a feature map is just another way of adding
hypotheses, but it is one that can be tailored perfectly for the application, using
kernel engineering knowledge.

3.3 Optimality

We are now left with the problem to pick f somehow from the space K, using
our training set. If we insist on exact recovery, we get an instance of Guideline
3.1 (guioptuse) from

Theorem 3.4 (TheBBMOR) Let the kernel K be symmetric positive definite.
Then a function of the form

eqfsimp

f∗ :=

N∑

k=1

αkK(·, xk) (14)

is the unique minimizer of the Hilbert space norm in K under all functions f ∈ K
with f(xj) = yj , 1 ≤ j ≤ N . The coefficients αk can be calculated from the
linear system

eqintsys

N∑

k=1

αkK(xj , xk) = yj , 1 ≤ j ≤ N. (15)
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As Section 4 (SecKiPM) will show, the system (15, eqintsys) also arises for
different nondeterministic recovery problems in exactly the same way, but with
different semantics.

Clearly, symmetric positive definiteness of the kernel implies positive defi-
niteness of the kernel matrix AK,X we already saw in Definition 2.5 (DefKerPD).

Guideline 3.5 (gui) Interpolation of unstructured data using a kernel is an
optimal strategy for black-box modelling and learning from noiseless information.

The essential information on the application is built into the kernel. Once the
kernel is there, things are simple, theoretically. The generalization error is
optimal in the following sense:

Theorem 3.6 (Thepwoptrec) Consider all possible linear recovery schemes of
the form

fα(·) :=
N∑

j=1

αj(·)f(xj)

which use the training data (xj , yj) = (xj , f(xj)), 1 ≤ j ≤ N for an unknown
model f ∈ K and employ arbitrary functions αj on Ω. Then the approximate
solution f∗ of Theorem 3.4 (TheBBMOR) satisfies

eqlagrep

inf
α

sup
‖f‖K≤1

|f(x)− fα(x)| = sup
‖f‖K≤1

|f(x) − f∗(x)| for all x ∈ Ω (16)

and it has the form f∗ = fu∗ with Lagrange-type functions u∗1(x), . . . , u
∗
N(x)

from span {K(·, xj) : 1 ≤ j ≤ N} satisfying
eqlagsys

N∑

j=1

u∗j (x)K(xj , xk) = K(x, xk), 1 ≤ k ≤ N, for all x ∈ Ω. (17)

Note that this is another instance of Guideline 3.1 (guioptuse). The optimality
results of the previous theorems are well-known properties of univariate splines.

Guideline 3.7 (guispli) In the context of optimal recovery, kernel methods
provide natural multivariate extensions of classical univariate spline techniques.

For later reference in Section 4 (SecKiPM), we should explain the connection
between the linear systems (15, eqintsys) and (17, eqlagsys) on one hand,
and the representations (14, eqfsimp) and (16, eqlagrep) on the other hand.
Theorem 3.4 (TheBBMOR) works on the basis K(·, xk) directly, while Theorem 3.6
(Thepwoptrec) produces a new basis of functions u∗j which has the Lagrangian
property u∗j (xk) = δjk but spans the same space. The optimal recovery solutions
coincide, but have different basis representations. Transition to a local Lagrange
basis is one of the possible preconditioning strategies [?], and approximate La-
grangian bases yield quasi-interpolants [?] which avoid solving linear systems
because they provide approximate inverses. This is a promising research area.
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If the recovery problem (11, eqfapp) is generalized to (13, eqlapp), there is
a similar theory [100] concerning optimal recovery, replacing the kernel matrix
with entriesK(xj , xk) by a symmetric matrix with elements λxj λ

y
kK(x, y), where

we used an upper index x at λx to indicate that the functional λ acts with respect
to the variable x. The system (15, eqintsys) goes over into

eqHBlinsys

N∑

k=1

αkλ
x
j λ

y
kK(x, y) = yj , 1 ≤ j ≤ N, (18)

while (17, eqlagsys) will be

N∑

j=1

u∗j(x)λ
x
j λ

y
kK(x, y) = λykK(x, y), 1 ≤ k ≤ N, for all x ∈ Ω.

When using this approach for the recovery problem (12, eqpoisson), we get a
symmetric meshless collocation technique for solving Poisson’s equation. This
will be treated in more detail in Section 15 (SecMC).

Let us go back to the generalization error. We shall see in Section 7 (SecAK)
that the generalization error of kernels on Rd dramatically improves with their
smoothness while still maintaining applicability to recovery problems with un-
structured data. This is one of the key features of kernel techniques.

Guideline 3.8 (guismaerr) Methods based on fixed kernels can provide recov-
ery techniques with very small errors.

3.4 Condition and Stability

But the small generalization error comes at a high price, because there are seri-
ous practical problems with systems of the form (15, eqintsys). This is in sharp
contrast to the encouraging optimality properties stated so far. The systems
can be very large, non-sparse and severely ill-conditioned. However, the latter
is no surprise because the method solves an ill-posed problem approximatively.
Thus the bad condition of the system (15, eqintsys) must be expected some-
how. There is an apparent link between condition and scaling, since kernels
with small supports will lead to approximately diagonal kernel matrices, while
kernels with wide scales produce matrices with very similar rows and columns.

Guideline 3.9 (guismallscale) Kernels with small scales lead to better ma-
trix condition than kernels with wide scales.

Since we know that kernel systems are solvable, we have

Guideline 3.10 (guiintreg) Methods based on positive definite kernels have
a built-in regularization.
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In fact, they solve the ill-posed problem (11, eqfapp) by providing an approx-
imative solution minimizing the Hilbert space norm in K under all conceivable
exact recovery schemes there, so that they act like using a regularizing penalty
term of the form ‖f‖2K which can be a Sobolev space norm for certain kernels.
This regularization property will come up later when we use kernels in collo-
cation techniques for solving partial differential equations. If (15, eqintsys) is
viewed as an approximate solution of the integral equation

∫

Ω

α(x)K(y, x)dx = f(y) for all y ∈ Ω

via a quadrature formula, we have another aspect telling us that (15, eqintsys)
solves an ill-posed problem approximately via some regularization in the back-
ground. Note the connection to convolution (3, eqkerconv).

The generalization error f(x) − f∗(x) and the condition of the system (15,
eqintsys) have an unexpected connection. Theoretical results [79] and Exper-
iments with various kernels show

Guideline 3.11 (guiunc) Increasing smoothness of kernels on Rd decreases
the recovery error but increases the condition of the system (15, eqintsys).
There are no kernels that provide small errors and good condition simultane-
ously.

Guideline 3.12 (guiwidescale) Increasing the scale of a kernel on Rd de-
creases the recovery error but increases the condition of the system (15, eqintsys).

Note that this limits the use of systems like (15, eqintsys) in their original form,
but techniques like preconditioning [?] may be applied to change the systems at
the cost of tolerable additional errors.

3.5 Relaxation and Complexity

Furthermore, if N is huge, the exact solution of a system (15, eqintsys) in the
form (14, eqfsimp) is much too complex to be useful. This is where another
general rule comes up:

Guideline 3.13 (guirerereco) Within kernel methods, relaxation of require-
ments can lead to reduction of complexity.

Under certain probabilistic hypotheses, this is another aspect of the bias-variance
dilemma related to overfitting. As we already mentioned at the beginning, in-
sisting on exact reproduction of huge amounts of data increases the complexity
of the model and makes it very sensible to changes in the training data, thus
less reliable as a model. Conversely, relaxing the reproduction quality will al-
low a simpler model. Before we turn to specific relaxation methods used in
kernel-based learning, we should look back at Guideline 3.11 (guiunc) to see
that badly conditioned large systems of the form (15, eqintsys) using smooth
kernels will often have subsystems that provide good approximate solutions to
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the full system. This occurs if the generalization error is small when going over
from the training data of a subset to the full training data. Thus Guideline 3.13
(guirerereco) may be applied by simply taking a small suitable subset of the
data, relying on Guideline 3.11 (guiunc). As we shall see, this has serious im-
plications for kernel-based techniques for solving partial differential equations.
For simple cases, the following suffices:

Guideline 3.14 (guipivot) Within kernel methods, large and ill-conditioned
systems often have small and better conditioned subsystems furnishing good ap-
proximate solutions to the full system. Handling numerical rank loss by intelli-
gent pivoting is useful.

However, large problems need special treatment, and we shall deal with such
cases in Section 8 (SecHLS).

The relaxation of (15, eqintsys) towards (11, eqfapp) can be done in several
ways, and learning theory uses loss functions to quantify the admissible error in
(11, eqfapp). We present this in Section 11 (SecAL) in more detail. Let us look
at a simple special case. We allow a uniform tolerance ǫ on the reproduction of
the training data, i.e. we impose the linear constraints

eqlinconstr

−ǫ ≤ f(xj)− yj ≤ ǫ, 1 ≤ j ≤ N. (19)

We then minimize ‖f‖K while keeping ǫ fixed, or we minimize the weighted
objective function 1

2‖f‖2K + Cǫ when ǫ is varying and C is fixed. Optimization
theory then tells us that the solution f∗ is again of the form (14, eqfsimp),
but the Kuhn-Tucker conditions imply that the sum only contains terms where
the constraints in (19, eqlinconstr) are active, i.e. αk 6= 0 holds only for
those k with |f(xk) − yk| = ǫ. In view of principle 3.8 (guismaerr) these
support vectors will often be a rather small subset of the full data, and they
provide an instance of complexity reduction via relaxation along Guideline 3.13
(guirerereco). This roughly describes the principles behind support vector
machines for the implementation of learning algorithms. These principles are
consequences of optimization, not of statistical learning theory, and they arise
in other applications as well. We explain this in some more detail in Section
11 (SecAL) and apply it to adaptive collocation solvers for partial differential
equations in Section 15 (SecMC).

Furthermore, we see via this optimization argument that the exact solution
of a large system (15, eqintsys) can be replaced by an approximative solution
of a smaller subsystem. This supports Guideline 3.14 (guipivot) again. It is
in sharpest possible contrast to the large linear systems arising in finite element
theory.

Guideline 3.15 (guiadaopt) Systems arising in kernel-based recovery prob-
lems should be solved approximatively by adaptive or optimization algorithms.

At this point, the idea of online learning is helpful. It means that the training
sample is viewed as a possibly infinite input sequence (xj , yj) ≈ (xj , f(xj)), j =
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1, 2, . . . which is used to update the current model function fk if necessary. The
connection to adaptive recovery algorithms is clear, since a new training data
pair (xN+1, yN+1) will be discarded if the current model function fk works
well on it, i.e. if fk(xN+1) − yN+1 is small. Otherwise, the model function is
carefully and efficiently updated to make optimal use of the new data. Along
these lines, one can devise adaptive methods for the approximate solution of
partial differential equations which “learn” the solution in the sense of online
learning.

Within Approximation Theory, the concept of adaptivity is closely related
to the use of dictionaries and frames. In both cases, the user does not work
with a finite and small set of trial functions to perform a recovery. Instead, a
selection from a large reservoir of possible trial functions is made, e.g. by greedy
adaptive methods or by choosing frame representations with many vanishing
coefficients via certain projections. This will be a promising research area in
the coming years.

The final sections of this article will review several application areas of kernel
techniques. However, we shall follow the principles stated above, and we shall
work out the connections between recovery, learning, and equation solving at
various places. This will have to start with a look on nondeterministic recovery
problems.

4 Kernels in Probabilistic Models

(SecKiPM) There are several different ways in which kernels arise in probability
theory and statistics. We shall describe the most important ones briefly, ignoring
the standard occurrence of certain kernels like the Gaussian as densities of
probability distributions. Since Acta Numerica is aiming at readers in Numerical
Analysis, we want to assume as little stochastic background as possible.

4.1 Nondeterministic Recovery Problems

If we go back to the recovery problem of Section 3 (SecOR) and rewrite it in a nat-
ural probabilistic setting, we get another instance of Guideline 3.1 (guioptuse),
because kernel-based techniques again turn out to have important optimality
properties. Like in Section 3 (SecOR) we assume that we want to find the re-
sponse f(x) of an unknown model function f at a new point x of a set Ω,
provided that we have a sample of input-response pairs (xj , yj) = (xj , f(xj))
given by observation or experiment. But now we assume that the whole setting
is nondeterministic, i.e. the response yj at xj is not a fixed function of xj but
rather a realization of a real-valued random variable Z(xj). Thus we assume
that for each x ∈ Ω there is a real-valued random variable Z(x) with expecta-
tion E(Z(x)) and bounded positive variance E((Z(x) − E(Z(x))2). The goal
is to get information about the function E(Z(x)) which replaces our f in the
deterministic setting. For two elements x, y ∈ Ω the random variables Z(x) and
Z(y) will not be uncorrelated, because if x is close to y the random experiments
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described by Z(x) and Z(y) will often show similar behaviour. This is described
by a covariance kernel

eqcovkerZ

cov(x, y) := E(Z(x) · Z(y)) for all x, y ∈ Ω. (20)

Such a kernel exists and is positive semidefinite under weak additional assump-
tions. If there are no exact linear dependencies in the random variables Z(xi),
a kernel matrix with entries cov(xj , xk) will be positive definite. A special case
is a Gaussian process on Ω, where for every subset X = {x1, . . . , xN} ⊂ Ω the
vectors ZX := (Z(x1), . . . , Z(xN )) have a multivariate Gaussian distribution
with mean E(ZX) ∈ RN and a covariance yielding a matrix A ∈ RN×N which
has entries cov(xj , xk) in the above sense.

Now there are several equivalent approaches to produce a good estimate for
Z(x) once we know data pairs (xj , yj) where the yj are noiseless realizations of
Z(xj). The case of additional noise will be treated later. First, Bayesian think-
ing asks for the expectation of Z(x) given the informationZ(x1) = y1, . . . , Z(xN ) =
yN and write this as the expectation of a conditional probability

Z̃(x) := E(Z(x)|Z(x1) = y1, . . . , Z(xN ) = yN ).

Second, Estimation Theory looks at all linear estimators of the form

Z̃(x) :=

N∑

j=1

uj(x)yj

using the known data to predict Z(x) optimally. It minimizes the risk defined
as

E((Z(x)−
N∑

j=1

uj(x)Z(xj))
2)

by choosing appropriate coefficients uj(x).
Both approaches give the same result. Furthermore, the result is compu-

tationally identical to the solution of the deterministic case using the kernel
K(x, y) = cov(x, y) right away, ignoring the probabilistic background com-
pletely. The system (15, eqintsys) has to be solved for the coefficients αk, and
the result can be written either via (14, eqfsimp) or Theorem 3.6 (Thepwoptrec).
The proof of this theorem is roughly the same as the one for the Estimation
Theory case in the probabilistic setting.

Guideline 4.1 (guidetprob) Positive definite kernels allow a unified treat-
ment of deterministic and probabilistic methods for recovery of functions from
data.

Guideline 4.2 (guidetprobeq) Applications using kernel-based trial spaces in
non-deterministic settings should keep in mind that what they do is equivalent to
an estimation process for spatial random variables with a covariance described
by the chosen kernel.
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This means that compactly supported or quickly decaying kernels lead to un-
coupled spatial variables at larger distances. Furthermore, it explains why
wide scales usually allow to get along with fewer data (see Guideline 3.12
(guiwidescale)). If there is a strong interdependence of local data, it suffices
to use few data to explain the phenomena.

If we add a noise variable ǫ(x) at each point x ∈ Ω with mean zero and vari-
ance σ2 such that the noise is independent for different points and independent
of Z there, the covariance kernel with noise is

E((Z(x) + ǫ(x)) · (Z(y) + ǫ(y))) = cov(x, y) + σ2δxy

such that in presence of noise one has to add a diagonal matrix with entries
σ2 to the kernel matrix in (15, eqintsys). This addition of noise makes the
kernel matrices positive definite even if the covariance kernel is only positive
semidefinite. In a deterministic setting, this reappears as relaxed interpolation
and will be treated in Section 7 (SecAK).

If there is no a-priori information on the covariance kernel and the noise
variance σ, one can try to estimate these from a sufficiently large data sample.
For details we refer to the literature [?, ?].

If the covariance kernel is positive definite, the general theory of Section 2
(SecKer) applies. It turns the space spanned by functions cov(·, y) on Ω into
a reproducing kernel Hilbert space such that the inner product of two such
functions is expressible via (4, eqKKK) by the covariance kernel itself. This is
not directly apparent from where we started. In view of learning theory, the
map x 7→ cov(x, y) is a special kind of feature map which assigns to each other
input x a number indicating how closely related it is to y.

4.2 Random Functions

In the above situation we had a random variable Z(x) at each point x ∈ Ω. But
one can also consider random choices of functions f from a set or space F of
real-valued functions on Ω. This requires a probability measure ρ on F , and
one can define another kind of covariance kernel via

eqcovkerF

cov(x, y) := E(f(x) · f(y))
=

∫

F

f(x)f(y)dρ(f) for all x, y ∈ Ω

=

∫

F

δx(f)δy(f)dρ(f) for all x, y ∈ Ω.

(21)

This is a completely different situation, both mathematically and “experimen-
tally”, because the random events and probability spaces are different.

But now the connection to Hilbert spaces and feature maps is much clearer
right from the start, since the final form of the covariance kernel can be seen
as a bilinear form cov(x, y) = (δx, δy) in a suitable space. For this, we define a
feature map
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eqphiF

Φ(x) := δx : f 7→ f(x) for all f ∈ F (22)

as a linear functional on F . To a fixed input item x it assigns all possible
“attributes” f(x) where f varies over all random functions in F . If we further
assume that the range of the feature map is a pre-Hilbert subspace of the dual
F∗ of F under the inner product

(λ, µ)F∗ := E(λ(f) · µ(f)) =
∫

F

λ(f)µ(f)dρ(f),

we are back to (1, eqkerler) in the form
eqcovPP

cov(x, y) = (Φ(x),Φ(y))H for all x, y ∈ Ω (23)

once we take H as the Hilbert space completion.
If we have training data pairs (xi, yi), i = 1, . . . , N as before, the yi are

simultaneous evaluations yi = f(xi) of a random function f ∈ F . A Bayesian
recovery problem without noise would take the expected f ∈ F under the known
information yi = f(xi) for i = 1, . . . , N . Another approach is to find functions
uj on Ω such that the expectation

E((f(x)−
N∑

j=1

uj(x)f(xj))
2)

is minimized. Again, these two recovery problems coincide and are computation-
ally equivalent to what we already did in Section 2 (SecKer) in the deterministic
case, once the covariance kernel is specified.

The two different definitions for a covariance kernel cannot lead to seri-
ous confusion, because they are very closely related. If we start with random
functions and (21, eqcovkerF), there are pointwise random variables Z(x) :=
{f(x)}f∈F leading to the same covariance kernel via (20, eqcovkerZ). Con-
versely, starting from random variables Z(x) and (20, eqcovkerZ) such that the
covariance kernel is positive definite, a suitable function class F can be defined
via the span of all cov(·, y), and point evaluations on this function class carry an
inner product which allows to define a Hilbert space H such that (22, eqphiF)
and (23, eqcovPP) hold.

4.3 Density Estimation by Kernels

This is again a different story, because the standard approach does not solve a
linear system. The problem is to recover the density f of a multivariate distribu-
tion over a domain Ω from a large sample x1, . . . , xN ∈ Ω including repetitions.
Where sampling points lie dense, the true density function must take large val-
ues. A primitive density estimate is possible via counting the samples in each
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cell of a grid, and to plot the resulting histogram. This yields a piecewise con-
stant density estimate, but one can do better by using a nonnegative symmetric
translation-invariant kernel K with total integral one and defining

f̃(x) :=
1

N

N∑

j=1

K

(
x− xi
h

)

as a smooth estimator. If the bandwidth h is taken too small, the result just
shows sharp peaks at the xi. If h is too large, the result is smoothed too much
to be useful. We have another instance of the scaling problem here. There is a
vast literature [?] on picking the “right” bandwidth and kernel experimentally,
using as much observational or a-priori information as possible.

5 Kernel Construction

(SecKC) Before we delve into applications, we have to prepare by taking a closer
and more application-oriented view at kernels. We want to give a short but
comprehensive account of kernel construction techniques, making the reader
able to assess features of given kernels or to construct new ones with prescribed
properties.

If the domain Ω has no structure at all, the most important strategy to
get a useful kernel is to construct a feature map Φ : Ω → H with values
in some Hilbert space H first, and then to use (1, eqkerler) for definition of
a kernel. The resulting kernel is always positive semidefinite, but it will be
hard to check for positive definiteness a priori, because this amounts to proving
that for arbitrary different xj ∈ Ω the feature vectors Φ(xj) ∈ H are linearly
independent. However, linearly dependent Φ(xj) lead to linearly dependent
functions K(·, xj), and these are useless in the representation (14, eqfsimp)
and can be blended out by pivoting or a suitable optimization.

Guideline 5.1 If pivoting, adaptivity, or optimization is used along Guide-
lines 3.14 (guipivot) and 3.15 (guiadaopt), one can safely work with positive
semidefinite kernels in practice.

A very common special case of a feature map occurs if there is a finite or
countable set {ϕi}i∈I of functions on Ω. In applications, this arises if ϕi(x) is
the value of feature number i on an element x ∈ Ω. The feature map Φ then
takes an element x into the set Φ(x) := {ϕi(x)}i∈I ∈ R. For a set {wi}i∈I of
positive weights one can define a weighted ℓ2 space by

ℓ2,w(I) :=

{
{ci}i∈I :

∑

i∈I

wic
2
i <∞

}

and then assume that these weights and the functions ϕi satisfy
∑

i∈I

wiϕ
2
i (x) <∞
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on all of Ω. This means that the scaling of the functions ϕi together with the
weights wi must be properly chosen such that the above series converges. Then
we define H := ℓ2,w(I) and (1, eqkerler) yields the kernel

eqsumker

K(x, y) :=
∑

i∈I

wiϕi(x)ϕi(y) for all x, y ∈ Ω (24)

dating back to early work of Hilbert and Schmidt. Such kernels are called
Mercer kernels in the context of learning algorithms due to their connection to
the Mercer theorem on positive integral operators. But note that the latter
theory is much more restrictive, decomposing a given positive integral operator
with kernel K into orthogonal eigenfunctions ϕi corresponding to eigenvalues
wi. For our purposes, such assumptions are not necessary.

Even outside of machine learning, many useful recovery algorithms use ker-
nels of the above form. For instance, on spheres one can take spherical harmon-
ics, and on tori one can take sin and cos functions. This is the standard way
of handling kernels in these situations, and there is a vast literature [?] on such
methods, including applications to geophysics [?].

The reader may figure out that (24, eqsumker) is a well-known ingredient
of calculus. For instance, classical Fourier analysis on [0, 2π) or the unit circle
in the complex plane using standard trigonometric functions and fixed weights
leads to the well-known Dirichlet kernel this way. If the functions ϕi are or-
thogonal univariate polynomials, the corresponding kernel is provided by the
Christoffel-Darboux formula.

???????????? check ????

Guideline 5.2 (guiortho) If expansion-type kernels (24, eqsumker) are used,
kernel methods provide natural multivariate extensions not only of splines (see
Guideline 3.7 (guispli)), but also of classical univariate techniques based on
orthogonality.

A highly interesting new class of kernels arises when the functions ϕi are scaled
shifts of compactly supported refinable functions in the sense of wavelet theory.
The resulting multiscale kernels [72] have a built-in multiresolution structure re-
lating them to wavelets and frames. Implementing these new kernels into known
kernel techniques yields efficient multiscale algorithms which are currently in-
vestigated.

Of course, one can generalize (24, eqsumker) to a convolution-type formula
eqintker

K(x, y) :=

∫

T

ϕ(x, t)ϕ(y, t)w(t)dt for all x, y ∈ Ω (25)

under certain integrability conditions and with a positive weight function w on
an integration domain T . This always yields a positive semidefinite kernel, and
positive definiteness follows if functions ϕ(x, ·) are linearly independent on T for
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different x ∈ Ω. Together with (24, eqsumker), this technique is able to generate
compactly supported kernels, but there are no useful special cases known which
were constructed along these lines.

Guideline 5.3 (guiweisum) Kernels obtained by weighted positive summation
or by convolution of products of other functions are positive semidefinite.

However, the most important case arises when the underlying set Ω has more
structure, in particular if it allows transforms of some sort.

Guideline 5.4 (guipostra) Invariant kernels with positive transforms are pos-
itive semidefinite.

We do not want to underpin this in full generality, e.g. for Riemannian manifolds
[39] or for topological groups [52]. Instead, we focus on translation-invariant
kernels on Rd and use Fourier transforms there, where the above result is well-
known and easy to prove. In fact, positivity of the Fourier transform almost ev-
erywhere is sufficient for positive definiteness of a kernel. This argument proves
positive definiteness of the Gaussian and the Sobolev kernel in (7, eqSobK),
because their Fourier transforms are well-known (another Gaussian and the
function (1 + ‖.‖22)−k, respectively, up to certain constants). By inverse argu-
mentation, also the inverse multiquadric kernels of the form

eqIMQ

K(x− y) := (1 + ‖x− y‖22)−k, x, y ∈ Rd, k > d/2 (26)

are positive definite.
But note that all of these kernels have infinite support, and the kernel ma-

trices arising in (15, eqintsys) will not be sparse. To generate sparse kernel
matrices, one needs explicitly known compactly supported kernels with posi-
tive Fourier transforms. This was quite a challenge for some years, but now
there are classes of such kernels explicitly available via efficient representations
[101, 99, 29]. If they are dilated to have support on the unit ball, they have the
simple radial form

eqWendf

....???????HW?????. (27)

.....????? etc. etc. for HW to do....
There are a few other construction techniques that allow to generate new

kernels out of known ones.

Theorem 5.5 Kernels obtained by weighted positive summation of positive (semi-
) definite kernels on the same domain Ω are positive (semi-) definite.

Guideline 5.6 (guikerop) If a nontrivial linear operator L is applied to both
arguments of a positive semidefinite kernel, chances are good to have another
positive semidefinite kernel.
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This can be carried out in detail by using the representations (24, eqsumker) or
(25, eqintker), if they are available. In general, one can work with (4, eqKKK)
and assume that L can be applied inside the inner product.

Though of only theoretical importance, we note that the approach via feature
maps and learning theory, as employed in early sections of this paper, is no
special case of the general situation.

Theorem 5.7 Every symmetric positive definite kernel can be generated via a
suitable feature map.

Proof: Given a symmetric positive definite kernel K, define Φ(x) := K(x, ·)
and H := K using (4, eqKKK) to get (1, eqkerler). QED.

There is another construction technique we ignore here. It is covered well
in the literature and relies on completely monotone univariate functions. For
applications, it is of minor importance, because it is restricted to radial kernels
which are positive definite on Rd for all dimensions, and it cannot generate
kernels with compact support.

6 Special Kernels

(SecSK) So far, we already have presented the Gaussian kernel (9, eqGauss),
the inverse multiquadric (26, eqIMQ), and the Sobolev kernel (7, eqSobK). These
have in common that they are radial basis functions which are globally positive
and have positive Fourier transforms. Another important class of radial ker-
nels is compactly supported and of local polynomial form, i.e. the Wendland
functions (27, eqWendf). But this is not the end of all possiblities.

Guideline 6.1 (guipdeker) There are other and somewhat more special ker-
nels which are related to important partial differential equations.

The most prominent case is the thin-plate spline [?]
eqTPS

K(x, y) = ‖x− y‖22 log ‖x− y‖2 for all x, y ∈ Rd (28)

which models a thin elastic sheet suspended at y as a function of x and solves
the biharmonic equation ∆2u = 0 everywhere except at y. More generally, there
are polyharmonic splines defined as fundamental solutions of iterated Laplacians.
They deserve a closer look, because they have special scaling properties, are of
central importance for the meshless Method of Fundamental Solutions in Section
14 (SecSWKT), and lead naturally to the notion of conditionally positive definite
functions below.

The fundamental solution for a differential operator L at some point x ∈ Rd

is defined as a kernel K(x, ·) which satisfies LK(x, ·) = δx in the distributional
sense. For the iterated Laplacian Lm := (−∆)m we get radial kernels

r2m−d for d odd
r2m−d log r for d even
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as functions of r = ‖x−y‖2 up to multiplicative constants and for 2m > d. This
contains the thin-plate splines of (28, eqTPS) for m = d = 2 and generalizes to
positive real exponents as

eqPHS

rβ for β /∈ 2Z
rβ log r for β ∈ 2Z

(29)

where now the space dimension does not appear any more.
Unfortunately, these functions increase with r, and so they are neither bell-

shaped nor globally integrable. Their Fourier transforms cannot be calculated in
the classical sense, and thus there are no standard Fourier transform techniques
to prove positive definiteness. The same holds for multiquadrics

(1 + r2)β/2 for β /∈ 2Z, β > 0

which can be seen as a regularization of the polyharmonic spline rβ at zero, and
which extends the inverse multiquadrics of (26, eqIMQ) to positive exponents,
the most widely used case being β = 1.

Fortunately, these functions can be included into kernel theory by a simple
generalization.

Definition 6.2 (Defcondpos) A symmetric kernel K : Ω × Ω → R is con-
ditionally positive (semi-) definite of order m on Ω ⊆ Rd, if for all finite
subsets X := {x1, . . . , xN} of Ω the symmetric matrices AK,X with entries
K(xj , xk), 1 ≤ j, k ≤ N define a positive (semi-) definite quadratic form on
the subspace

eqmomcond

Vm,X := {α ∈ RN :

N∑

j=1

αjp(xj) = 0 for all p ∈ P d
m} (30)

of coefficient vectors satisfying certain discrete moment conditions with respect
to the space P d

m of d-variate polynomials of order at most m.

Note that (unconditional) positive definiteness is identical to conditional pos-
itive definiteness of order zero, and that conditional positive definiteness of
order m implies conditional positive definiteness of any larger order. Table
?? (tabkernel) lists the appropriate orders of positive definiteness for special
radial kernels.

Recovery problems using conditionally positive definite kernels of positive
order m have to modify the trial space K0 to

eqcpdtrial

Km := P d
m + Pm

Pm := span






N∑

j=1

αjK(·, xj), α ∈ Vm,X , X = {x1, . . . , xN} ⊂ Ω




.

(31)
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The norm (5, eqKKnorm) now works only on the space Pm, and thus clos Pm

turns into a Hilbert space. The native space K for K then is K := P d
m +

clos Pm, but the reproduction (8, eqrepro) of functions via the kernel K needs
a modification which we suppress here.

If we have training data (xk, yk), 1 ≤ k ≤ N for a model f(xk) = yk, we
now plug these equations into our new trial space, using a basis p1, . . . , pQ of
P d
m and get a linear system

N∑

j=1

αjK(xk, xj) +

Q∑

i=1

βip(xk) = yk, 1 ≤ k ≤ N

N∑

j=1

αjpℓ(xj) + 0 = 0 1 ≤ ℓ ≤ Q.

This system has N +Q equations and unknowns, and it is uniquely solvable if
there is no nonzero polynomial vanishing on the set X = {x1, . . . , xN}. Since
the order m of conditional positive definiteness is usually rather small (m = 1
for standard multiquadrics and K(x, y) = ‖x− y‖2, while m = 2 for thin-plate
splines) this modification is not serious, and it can be made obsolete if the
kernel is changed slightly [?]. However, many engineering applications use mul-
tiquadrics or thin-plate splines without adding constant or linear polynomials,
and without caring for the moment conditions in (30, eqmomcond). This often
causes no visible problems, but is violating restrictions imposed by conditional
positive definiteness.

Note that trial spaces for polyharmonic functions are independent of scal-
ing, if they are properly defined via (31, eqcpdtrial). This eliminates many
of the scaling problems arising in applications, but it comes at the price of lim-
ited smoothness of the kernels, thus reducing the attainable reproduction errors
along Guideline 3.11 (guiunc).

The condition 2m > d for the polyharmonic functions forbids useful cases
like m = 1 in dimensions d ≥ 2, and thus it excludes the fundamental solutions
log r and r−1 of the Laplacian in dimensions 2 and 3. These kernels are radial,
but they have singularities at zero. They still are useful reproducing kernels in
Sobolev spaces W 1

2 (R
d) for d = 2, 3, but the reproduction property now reads

λ(f) = (λxK(· − x), f)
W 1

2
(Rd

)

for all f ∈ W 1
2 (R

d), λ ∈
(
W 1

2 (R
d)
)∗

= W−1
2 (Rd). These kernels and their

derivatives arise in integral equations as single or double layer potentials, and
we shall encounter them again in Section 14 (SecSWKT) where they are used for
the meshless Method of Fundamental Solutions.

7 Approximation by Kernels

(SecAK)

24



In studying the approximation and stability properties of meshless methods,
the following two geometric quantities are usually employed. Suppose we are
confronted with a bounded set Ω ⊆ Rd and a finite subset X = {x1, . . . , xN} ⊆
Ω. The approximation power is measured in terms of the fill distance, which is
given by the radius of the largest data-site free ball in Ω, i.e.

eqfilldistance

hX := hX,Ω := sup
x∈Ω

min
1≤j≤N

‖x− xj‖2. (32)

The second geometric quantity is the separation radius, which is half the distance
between the two closest data sites, i.e.

eqseparationradius

qX :=
1

2
min
j 6=k

‖xj − xk‖2. (33)

Obviously, the separation radius plays an important role in the stability analysis
of the interpolation process, since a small qX means that two points, and hence
two rows in the system (15, eqintsys) are nearly the same.

Finally, we will call a sequence of data sets X = Xh quasi-uniform if there
is a constant cq > 0 independent of X such that

qX ≤ hX,Ω ≤ cqqX .

The mesh ratio ρ = ρX,Ω := hX,Ω/qX ≥ 1 provides a measure of how uniformly
points in X are distributed in Ω.

7.1 Nonstationary versus Stationary Schemes

There is fundamental difference in studying the approximation behavior of mesh-
less kernel methods and classical spline or finite element methods, which can be
described as follows.

In classical FEM and spline theory the support of the nodal basis functions
scales with the size of the mesh. For example, using classical hat functions
to express a piecewise linear spline function over the node set hZ leads to a
representation of the form

linearSpline

sh(x) =
∑

j∈Z

αjB1

(
x− jh

h

)
=
∑

j∈Z

αjB1

(x
h
− j
)

(34)

where B1 is the standard hat function, which is zero outside [0, 2] and is defined
to be B1(x) = x for 0 ≤ x ≤ 1 and B1(x) = 2− x for 1 ≤ x ≤ 2.

From (34, linearSpline) it follows that each of the basis functions B1(
·
h−j)

has support [jh, (j+2)h], i.e. the support scales with the grid width. As a con-
sequence, when setting up an interpolation system, each row in the interpolation
matrix has the same number of nonzero entries (here actually only one); and
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this is independent of the current grid width. Hence, such a situation is usually
referred to as a stationary scheme. Thus, for a stationary scheme, the basis
function scales linearly with the grid width. In contrast, in a nonstationary
scheme the basis function is kept fixed for all grid sizes h, i.e. the approximant
would now take the form

linearSplineNonStationary

sh(x) =
∑

j∈Z

αjB1(x− jh), (35)

resulting into a denser and denser interpolation matrix if h tends to zero. While
in classical spline theory approximants of the form (35, linearSplineNonStationary)
play no role at all, they are crucial in meshless methods for approximating and
interpolating with positive definite kernels.

Guideline 7.1 (GuidelineTradeOff) In meshless methods using positive def-
inite kernels, approximation orders refer in general to a nonstationary setting.
However, nonstationary schemes lead to ill-conditioned interpolation matrices.
On the other hand, a fully stationary scheme provides in general no convergence
but interpolation matrices with a condition number being independent of the fill
distance.

Guideline 7.1 describes another general trade-off or uncertainty principle in
meshless methods, see also Guideline 3.11. As a consequence, when working in
practice with scaled versions of one translation invariant kernel, the scale factor
needs special care.

7.2 Nonstationary Interpolation

We now study approximation properties of interpolants of the form (14, eqfsimp)
with a fixed kernel but for various data sets X . To denote the dependence on
X and f ∈ C(Ω) we will use the notation

sf,X =

N∑

j=1

αjK(·, xj)

where the coefficient vector is determined by the interpolation conditions sf,X(xj) =
f(xj), 1 ≤ j ≤ N .

First convergence results were restricted to target functions f ∈ H from the
native function space associated to the employed kernel, see [60, 61, 62, 59, 102].
They are local pointwise estimates of the form

|f(x)− sf,X(x)| ≤ CF (h)‖f‖H,

where F is a function depending on the kernel. For kernels of limited smoothness
it is of the form F (h) = hβ , where β relates to the smoothness of K. For
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infinite smooth kernels like Gaussians or (inverse) Multiquadrics it has the form
F (h) = exp(−c/h).

A detailed listing of kernels and their associated functions F can again be
found in [97].

Recent research has concentrated on two topics. First, a return to the clas-
sical roots of splines has shown that, at least in the case of kernels generating
Sobolev spaces as their native spaces, the approximation order is rather a prop-
erty of the space of target functions than the kernel. This is well-covered by
the second research topic, the escape scenario, where the target function is less
smooth than the kernel, i.e. error estimates have to be established for target
functions from outside the native Hilbert space.

Guideline 7.2 The approximation order depends locally rather on the smooth-
ness of the target function than on the smoothness of the kernel.

To make this more precise, let us state two recent results from [71, 70].
As usual we let W k

p (Ω) denote the Sobolev space of measurable functions
having weak derivatives up to order k in Lp(Ω). Furthermore, we will employ
fractional order Sobolev spaces W τ

p (Ω), which can, for example, be introduced
using interpolation theory.

Theorem 7.3 (thzeros) Let k be a positive integer, 0 < s ≤ 1, τ = k + s, 1 ≤
p <∞, 1 ≤ q ≤ ∞ and let m ∈ N0 satisfy k > m+d/p or, for p = 1, k ≥ m+d.
Let X ⊂ Ω be a discrete set with mesh norm hX,Ω where Ω is a compact set with
Lipschitz boundary which satisfies an interior cone condition. If u ∈ W τ

p (Ω)
satisfies u|X = 0, then

|u|Wm
q (Ω) ≤ Ch

τ−m−d(1/p−1/q)+
X,Ω |u|W τ

p (Ω),

where C is a constant independent of u and hX,Ω, and (x)+ = max{x, 0}.

Theorem 7.3 describes mainly the structure of Sobolev functions having lots
of zeros. It is entirely independent of any reconstruction method.

For interpolation by kernels we can set u = f − sf,X and, if the kernel gen-
erates the Sobolev space W τ

2 (Ω) employ Theorem 7.3 to derive error estimates,
for example, of the form

|f − sf,X |Wm
2

(Ω) ≤ Chτ−m
X,Ω ‖f‖W τ

2
(Ω)

|f − sf,X |Wm
∞

(Ω) ≤ Ch
τ−m−d/2
X,Ω ‖f‖W τ

2
(Ω).

This still covers only the situation of target functions from the native Hilbert
space. The next result is concerned with the situation that the kernel generates
a smooth Sobolev space W τ

2 (Ω) while the target function comes from a rougher

Sobolev space W β
2 (Ω). It employs the mesh ratio ρX,Ω = hX,Ω/qX .
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Theorem 7.4 If τ ≥ β, β = k + s with 0 < s ≤ 1 and k > d/2, and if

f ∈ W β
2 (Ω), then

‖f − sf,X‖Wµ
2
(Ω) ≤ Chβ−µ

X,Ω ρ
τ−µ
X,Ω‖f‖Wβ

2
(Ω), 0 ≤ µ ≤ β.

In particular, if X is quasi-uniform, this yields

‖f − sf,X‖Wµ
2
(Ω) ≤ Chβ−µ

X,Ω ‖f‖Wβ
2
(Ω), 0 ≤ µ ≤ β.

7.3 Approximation via Relaxed Interpolation

Classical interpolation works fine in the context of quasi-uniform and noiseless
data. However, if a data set is highly nonquasi-uniform, ill-conditioning becomes
an issue. This is due to the fact that the condition number of the interpolation
matrix AK,X = (K(xi, xj)) depends mainly on the smallest eigenvalue of AK,X .
For this eigenvalue it is known [11, 12, 28, 66, 67, 68, 69, 78, 97] that it can be
bounded from below by

λmin(AK,X) ≥ cG(qX)

where unfortunately, in accordance with Guideline 3.11, it often holds that
G(q) = F (q2).

Hence, the best approximation error with the most stable system is achieved
by using quasi-uniform sets. However, sorting out nearly coalescing points might
be problematic in particular if noisy data are considered.

One possible remedy to both problems, coalescing points and noisy data, is
to relax the interpolation condition and to solve instead the following smoothing
problem:

eqsplineminprob

min






N∑

j=1

[f(xj)− s(xj)]
2 + λ‖f‖2H, : s ∈ H




 (36)

where λ > 0 is a certain smoothing parameter balancing the resulting approxi-
mant between interpolation and approximation. This problem already occurred
in a probabilistic setting in Section 4 (SecKiPM). It is also intensively studied in
the context of kernel learning, see for example [36, 37, 83]) and in the theory of
regularization networks (see for example [40]).

The fundamental theorem of learning theory is the following generalization
of Theorem 3.4:

Theorem 7.5 (Thesplineminprob) Suppose K is the reproducing kernel of H.
Then, the solution to (36, eqsplineminprob) is given by a function of the form
(14, eqfsimp), where the coefficient vector α = {αj} now can be calculated by
solving the linear system

(AK,X + λI)α = f |X.
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Guideline 7.6 (guidetprobrelax) Relaxed interpolation along the lines of (36,
eqsplineminprob) is computationally equivalent to recovery from noisy obser-
vations. The relaxation parameter λ is connected to the noise variance σ by
λ = σ2.

Theorem 7.5 (Thesplineminprob) shows that the ill-conditioning problem is
simply addressed by moving the eigenvalues of the interpolation matrix away
from zero by an offset given by the smoothing parameter λ > 0.

However, this immediately introduces the problem of how to choose the
smoothing parameter. There have been thorough investigations mainly moti-
vated by probabilistic approaches along the lines of Section 4 (SecKiPM), see for
example [75, 76, 35, 91, 92, 34, 74, 93].

Instead of going into details on this, we follow a recent deterministic approach
[98] which is based upon the following simple observation. The solution sλ of
(36, eqsplineminprob) allows the following two bounds

• |f(xj)− sλ(xj)| ≤
√
λ‖f‖H for all 1 ≤ j ≤ N ,

• ‖sλ‖H ≤ ‖f‖H.

Both can easily be verified, since f ∈ H is feasible in (36, eqsplineminprob).
Hence, if λ is considered to be small, the error function u = f − sλ is approxi-
mately zero on X and its H-norm can be bounded by the twice the H-norm of
f .

Theorem 7.7 Assume that all assumption of Theorem 7.3 hold, except for
u|X = 0. Then the following generalized estimate holds:

eqapproxint

|u|Wm
q (Ω) ≤ C

(
h
τ−m−d(1/p−1/q)+
X,Ω |u|W τ

p (Ω) + h−m
X,Ω‖u|X‖∞

)
. (37)

This gives in particular for our smoothing problem the estimate

‖f − sλ‖L∞(Ω) ≤ C
(
h
τ−d/2
X,Ω +

√
λ
)
‖f‖H.

Keeping in mind that in this particular situation F (h) = hτ−d/2 and G(q) =
q2τ−d, we have

Guideline 7.8 If the smoothing parameter λ > 0 is chosen as λ = Ch2τ−d,
then the best possible approximation order is achieved with an “interpolation
matrix” having a largest possible smallest eigenvalue.

7.4 Moving Least Squares

(SubSecMLS) While our analysis in the previous subsections dealt with nonsta-
tionary approximation schemes based on kernel methods, we will now discuss
a particular stationary scheme. Approximation by moving least squares has its
origin in the early papers [55, 63, 64, 85, 41, 42, 43]. They have become popular
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again, in approximation theory [56, 94], in computer graphics [], and in meshless
methods for solving partial differential equations [24].

The idea of moving least squares approximation is to solve for every point
x a locally weighted least squares problem. This appears to be quite expensive
at first sight, but actually it is a very efficient method. Moreover, in many
applications one is interested only in a few evaluations. For such applications
the moving least squares are even more attractive, because it is not necessary
to set up and solve a large system.

The influence of the data points is governed by a weight function w : Ω×Ω →
R, which becomes smaller the farther its arguments are away from each other.
Ideally, w vanishes for arguments x, y ∈ Ω with ‖x− y‖2 greater than a certain
threshold. Such a behavior can be modeled by using a translation invariant
weight function. This means that w is of the form w(x, y) = Φδ(x− y) with the
scaled version Φδ = Φ(·/δ) of a compactly supported function Φ : Rd → R.

Definition 7.9 For x ∈ Ω the value sf,X(x) of the moving least squares ap-
proximant is given by sf,X(x) = p∗(x) where p∗ is the solution of

min

{
N∑

i=1

(f(xi)− p(xi))
2w(x, xi) : p ∈ πm(Rd)

}
. (38)

Here, πm(Rd) denotes the space of all d-variate polynomials of degree at most
m. But it is not at all necessary to restrict oneself to polynomials. It is, for ex-
ample, even possible to incorporate singular functions into the finite dimensional
function space.

The minimization problem (38, mls) can be seen as a discretized version of
the continuous problem

min

{∫

Rd
|f(y)− p(y)|2w(x, y)dy : p ∈ πm(Rd)

}
,

where the integral is supposed to be restricted by the support of the weight
function to a region around the point x.

The simplest case of (38, mls) is given by choosing only constant polynomials,
i.e. m = 0. In this situation, the solution of (38, mls) can easily be computed
to the explicit form

eqshepard

sf,X(x) =

N∑

j=1

f(xj)
w(x, xj)∑N
k=1 w(x, xk)

, (39)

which is also called Shepard approximant. From the explicit form (39, eqshepard),
one can already read off some specific properties, which hold more generally also
for moving least squares. First of all, since the weight function w(x, y) is sup-
posed to be nonnegative, so are the “basis” functions

aj(x) =
w(x, xj)∑N
k=1 w(x, xk)

, 1 ≤ j ≤ N.
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Moreover, these functions form a partition of unity, i.e. they satisfy

N∑

j=1

aj(x) = 1.

Nonnegativity and partition of unity guarantee already linear convergence,
if the weight functions are of the form w(x, y) = Φ((x− y)/h), since we have for
all p ∈ π0(R

d):

|f(x)− sf,X(x)| ≤ |f(x)− p(x)|+ |p(x) − sf,X(x)|

≤ |f(x)− p(x)|+
N∑

j=1

aj(x)|p(x) − f(xj)|

≤ 2‖f − p‖L∞(B(x,h))

≤ Cfh.

To derive a similar result for the general moving least squares approximation
scheme, it is important to rewrite the approximant in form of a quasi-interpolant

sf,X =

N∑

j=1

amj (x)f(xj).

This is, under mild assumptions on the data sites, always possible. Though
the basis functions amj (x) are in general not nonnegative, they satisfy a con-
straint minimization problem, which leads to a uniform bound of the ℓ1-norm
of {amj (x)}Nj=1. From this, convergence orders can be derived. The following
results summarizes this discussion. Its proof can be found in [94].

Theorem 7.10 Suppose the data set X ⊆ Ω is quasi-uniform and πm(Rd)-
unisolvent. If the support radius δ of the compactly supported, nonnegative
weight function w(x, y) = Φ((x − y)/δ) is chosen proportional to the fill dis-
tance hX,Ω and if f ∈ Cm+1(Rd) is the target function, then the error can be
bounded by

‖f − sf,X‖L∞(Ω) ≤ Cfh
m+1
X,Ω .

It is remarkable, that this result is actually a local one, i.e. if there are
regions, where the target function is less smooth, the associated approximation
order is automatically achieved.

Moreover, the assumption on the data set to be quasi-uniform is negligible
if the support radius is continuously adapted to the local fill distance.

Finally, if for a point x ∈ Ω the data sites in the ball of radius δ = ChX,Ω are
known in advance, the minimization problem can be solved and hence the mov-
ing least squares approximation can be computed in constant time. Locating
the relevant data sites can be done by employing an “intelligent” data structure
in at most O(logN) time, if an additional O(N logN) time is allowed to built
the data structure. This, of course is only relevant if a substantial number of
evaluations is necessary. For only a few evaluations all relevant data sites can
be found by brute force methods in linear time.
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8 Large and Ill-conditioned Kernel Systems

(SecHLS)
Section 7 (SecAK) already indicated that approximation by kernels may lead

to large, non-sparse systems, which are often highly ill-conditioned. This will
become even more evident in Section 10 (SecAKI). Hence, it is now time to
discuss efficient methods for solving large and often dense systems.

There are mainly three different approaches here:

• multipole expansion with domain decomposition methods,

• partiton of unity methods,

• multilevel with compactly supported kernels.

Each of these methods has its strengths and drawbacks and it depends on
the users to decide which one suits their application best.

8.1 Multipole Expansions

We start with the discussion of multipole expansions. They are, in the first
place, only a tool to approximately evaluate sums of the form

eqsum

s(x) =
N∑

j=1

αjK(x, xj). (40)

in a fast way. As a matter of fact, they have been developed in the context of
the N -body problem, which appears in a diverse number of scientific fields (see
[13, 1, 50]).

It is important to realize that for largeN a system of the form (15, eqintsys)
cannot be solved by any direct method. Instead, iterative methods have to be
employed. No matter which iterative method is used, the main operation is a
matrix by vector multiplication, which is nothing but the evaluation of N sums
of the form (40, eqsum).

Hence, not only for a fast evaluation of the interpolant or approximant but
also for solving the linear equations (15, eqintsys) it is crucial to know how to
form such matrix by vector products efficiently.

To derive a sufficiently fast evaluation of (40, eqsum), for every evaluation
point x the sum is splitted in the form

eqssplit

s(x) =
∑

j∈I1

αjK(x, xj) +
∑

j∈I2

αjK(x, xj), (41)

where I1 contains the indices of those points xj that are close to x, while I2
contains the inidices of those points xj that are far away from x. Both sums can
now be replaced by approximations to them. In the first case, since ‖x− xj‖2
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is small for xj ∈ I1, the associated sum can, for example, be approximated by
a Taylor polynomial. This is sometimes called a near field expansion. More
important is a proper approximation to the second sum, which is done by a
unipole or farfield expansion.

The main idea of such an expansion is based upon a kernel expansion of the
form (24, eqsumker). Incorporating the weights wi into the function ϕi and
allowing also different functions for the two arguments, this can more generally
be written as

eqgenker

K(x, t) =
∞∑

i=1

ϕi(x)ψi(t) (42)

and one usually refers to t in Φ(x, t) as a source point while x is called an
evaluation point.

Now suppose that the source points xj , j ∈ I2, are located in a panel with
center t0, which is sufficiently far away from the evaluation point, i.e. panel
and evaluation point are well-separated. Suppose further, (42, eqgenker) can
be split into

eqphisplit

K(x, t) =

p∑

k=1

φk(x)ψk(t) +Rp(x, t) (43)

with a remainder Rp that tends to zero for ‖x − t0‖2 → ∞ or for p → ∞ if
‖x− t0‖2 is sufficiently large. Then, (43, eqphisplit) allows us to evaluate the
second sum s2 in (41, eqssplit) by

s2(x) :=
∑

j∈I2

αjK(x, xj)

=
∑

j∈I2

αj

p∑

k=1

φk(x)ψk(xj) +
∑

j∈I2

αjR(x, xj)

=

p∑

k=1

φk(x)
∑

j∈I2

αjψk(xj) +
∑

j∈I2

αjR(x, xj)

=:

p∑

k=1

βkφk(x) +
∑

j∈I2

αjR(x, xj).

Hence, if we use the approximation s̃2(x) =
∑p

k=1 βkφk(x) we have an error
bound

|s2(x)− s̃2(x)| ≤ ‖α‖1 max
j∈I2

|R(x, xj)|.

which is small if x is far enough away from the sources xj , j ∈ I2. Moreover,
each coefficient βk can be computed in advance in linear time. Thus, if p is
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much smaller than N , we can consider it as constant and we need only constant
time for each evaluation of s̃2.

So far, we have developed an efficient method for evaluating a sum of the
form (40, eqsum) for one evaluation point or, more generally, for evaluation
points from the same panel, which is well separated from the panel containing
the source points. To derive a fast summation formula for arbitrary evaluation
points x ∈ Ω, the idea has to be refined. To this end the underlying region
of interest Ω is subdivided into cells or panels. To each panel a far field and
a near field expansion is assigned. For evaluation, all panels are visited and,
depending whether the panel is well-separated from the panel which contains
the evaluation point or not, the near field or far field expansion is used.

The decomposition of Ω into panels can be done either uniformly or data-
dependently. A uniform decomposition makes a near field expansion indispens-
able since the cardinality of I1 cannot be controled. However, its simple struc-
ture makes it easy to implement and hence it has been and still is often used.
An adaptive decomposition is often based on a tree like data structure where
the panels are derived by recursive subdivision of space. More details can be
found in the literature. In any case, since we now have to implement a unipole
expansion for every panel, the resulting technique is called multipole expansion.

Unfortunately, the multipole expansion has to be precomputed for each ker-
nel separately. However, for translation invariant kernels K(x, y) = K(x − y),
it suffices to know the far field expansion around zero. Because this gives the
far field expansion around any t0 simply by

K(x− t) = K((x− t0)− (t− t0))

=

p∑

k=1

φk(x− t0)ψk(t− t0) +R(x− t0, t− t0).

The far field expansion around zero can often be calculated using Laurent
expansions of the translation invariant kernel. Details can be found in [14, 16,
17, 18, 19, 20, 22, 23, 51, 77].

8.2 Domain Decomposition

Having a fast evaluation procedure for functions of the form (40, eqsum), dif-
ferent iterative methods for solving the linear system (15, eqintsys) can be
applied. However, the reader should be aware of the fact that the far field
expansion may now lead to a nonsymmetric situation [15].

Here, we want to describe a domain decomposition method [21], which can
be extended to generalized interpolation problems [96] and has already been
used in the context of meshless methods for partial differential equations [?].
However, the name is rather distracting since the domain is not decomposed
but the approximation or trial space. The method is an iterative projection
method.

To decompose the trial space it suffices to decompose the set of centers X
(or more generally the set of functionals). To be more precise, let us decompose
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X into subsets X1, . . . , Xk. These subsets need not be disjoint but their union
must be X . Then the algorithm starts to interpolate on the first set X1, forms
the residual, interpolates this on X2 and so on. After k steps one cycle of the
algorithm is complete and it starts over again. A more formal description is

1. Set f0 = f , s0 = 0.

2. For n = 0, 1, 2, . . .

For r = 1, . . . , k

fnk+r = fnk+r−1 − IXr
fnk+r−1

snk+r = snk+r−1 + IXr
fnk+r−1

If ‖f(n+1)k‖L∞(X) < ǫ stop.

This algorithm approximates the interpolant IXf = f∗ from (14, eqfsimp) up
to the specified accuracy. The convergence result is based upon the fact that
the interpolant s0 = IXf is also the best approximant to f from the subspace

VX :=






N∑

j=1

αjK(x, xj) : α ∈ RN




 .

Convergence is achieved under very mild assumptions on the decomposition.
The data setsXj have to be weakly disjointmeaning thatXj 6= Yj and Yj+1 6= Yj
for each 1 ≤ j ≤ k − 1, where Yj = ∪k

i=jXi, 1 ≤ j ≤ k. This is, for example,
satisfied, if each Xj contains at least one data site, which is not contained in
any other Xi.

Theorem 8.1 Let f ∈ K be given. Suppose X1, . . . , Xk are weakly distinct
subsets of Ω ⊆ Rd. Set Yj = ∪k

i=jXi, 1 ≤ j ≤ k. Denote with s(j) the
approximant after j completed cycles. Then there exists a constant c ∈ (0, 1) so
that

‖f∗ − s(n)‖K ≤ cn‖f‖K.

For a proof of this theorem and for a more thorough discussion on how the
subsets Xj have to be chosen we refer the reader to [21, 97].

For an efficient implementation one needs not only the far field or multipole
expansion of the kernel. Since the coefficients of the sum (40, eqsum) are now
changing with every iteration, one also needs intelligent update formulas. Fi-
nally, the decomposition of X into X1, . . . , Xk has to be done in such a way that
the local interpolants and the (global) residuals can be computed efficiently.

8.3 Partition of Unity

Any iterative method for solving sysyem (15, eqintsys) leads to a solution
of the form (14, eqfsimp). Hence, every data site xk has influence on every
evaluation point x unless compactly supported kernels are used. Though, by
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employing multipole methods this influence has already been reduced. On the
other hand, in the situation of moving least squares, only near-by data sites are
used to form the approximant. It is now our goal to derive a similar result by
a partition of unity approach.

This time, we really decompose the domain Ω into small subdomains Ωk

in an overlapping manner: Ω ⊆ ∪M
j=1Ωj . Associated to this covering {Ωj} we

choose a partition of unity, i.e. a family of weight functions wj : Ωj → R, which
are nonnegative, supported in Ωj , and satisfy

M∑

j=1

wj(x) = 1, x ∈ Ω.

There weight functions are conveniently chosen as translates of kernels which
are smooth and compactly supported, but not necessarily positive definite.

Finally, we associate to each cell Ωj an approximation space Vj and an ap-
proximation process, which maps a function f : Ωj → R to an approximation
sj : Ωj → R. This approximation process can, for example, be given by lo-
cal interpolants using only the data sites Xj = X ∩ Ωj . However, the whole
procedure works for arbitrary approximation processes. In the end, the global
approximant is formed from the local approximants by weighting:

s(x) =

M∑

j=1

wj(x)sj(x), x ∈ Ω.

From the partition of unity property, we can immediately read-off that

|f(x)− s(x)| =

∣∣∣∣∣∣

M∑

j=1

[f(x)− sj(x)]wj(x)

∣∣∣∣∣∣

≤
M∑

j=1

|f(x)− sj(x)|wj(x)

≤ max
1≤j≤M

‖f − sj‖L∞(Ωj).

Hence, we have

Guideline 8.2 (guipum) The partition of unity approximant is at least as good
as its worst local approximant.

More sophisticated error estimates can be found in [8, 97], including also bounds
on the derivatives (simultanous approximation). In the latter case additional
assumptions on the partitions and the weight functions have to be imposed.
However, for an efficient implementation of the partition of unity method, these
are, in general, automatically satisfied. To control the complexity of evaluating
the partition of unity approximant, the cells must not overlap too much, i.e.
every x ∈ Ω has to be contained in only a small number of cells and these cells
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must be easily determinable. Moreover, each local approximant has to be eval-
uated efficiently. Keeping Guideline 8.2 in mind, this often goes hand in hand
with the fact that the regions are local meaning that their diameter is of the
size of the fill distance or the separation distance. For example, if the local ap-
proximation process employs polynomials a diameter O(hX,Ω) guarantees good
approximation properties of the local approximants by a Taylor polynomial ar-
gument. If interpolation by kernels is employed, it is more important that the
number of centers in each cell can be considered constant when compared to
the global number of centers. In each case one has roughly to assume that the
number of cells is proportional to the number of data sites. In this situation, all
local interpolants can be computed in linear time provided that the local centers
are known. Hence, everything depends upon a good data structure for both the
centers and the cells, which can be provided by tree-like constructions again.

Finally, the easiest way to construct the partition of unity weight functions
wj is by employing MLS in its simplest form, namely Shepard approximants
(see Section 7 (SecAK)).

8.4 Multilevel and Compactly Supported Kernels

We now turn to a method taylored in particular for compactly supported kernels.
We know from Section 7 (SecAK) that interpolation in the stationary setting will
not lead to convergence. Moreover, to guarantee solvability, the same support
radius for all basis functions has to be used. This, contradicts, in a certain way:

Guideline 8.3 (guilocalglobal) Resolve coarse features by using a large sup-
port radius and finer features with a smaller support radius.

To obey Guideline 8.3 (guilocalglobal), the following multilevel scheme is
useful. We first split our set X into a nested sequence

X1 ⊆ X2 ⊆ . . . ⊆ Xk = X.

If X is quasi-uniform meaning that qX has comparable size to hX,Ω, then the
subsets Xj should also be quasi-uniform. Moreover, they should satisfy qXj+1

≈
caqXj

and hXj+1,Ω ≈ cahXj ,Ω with a fixed constant ca.
Now, the multilevel method, introduced in [44], is simply one cycle of the

domain decomposition method. But this time we use compactly supported
basis functions with a different support radius at each level. We could even use
different basis functions at different levels. Hence, a general formulation goes
as follows. For every 1 ≤ j ≤ k we choose a kernel Kj and form the interpolant

Ijf := IXj ,Kj
f =

∑

xj∈Xj

cxj
(f)Kj(·, xj)

by using kernel Kj on level j. We have in mind to take Kj(x, y) as K((x −
y)/δj) with a compactly supported basis function K and scaling parameter δj
proportional to hXj ,Ω. The idea behind this algorithm is that one starts with
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a very thin, widely spread set of points and uses a smooth basis function to
recover the global behavior of the function f . In the next level a finer set of
points is used and a less smooth function possibly with a smaller support is
employed to resolve more details and so on.

As said before, the algorithm performs one cycle of the domain decomposi-
tion algorithm. This means

1. set f0 = f and s0 = 0.

2. for 1 ≤ j ≤ k:

sj = sj−1 + Ijfj−1,

fj = fj−1 − Ijfj−1.

8.5 Preconditioning

?????????? Weight kernels occurring in PoU and MLS. –¿ Section 7 (SecAK).

9 Kernels on Spheres

(SecKoS)
??????????

10 Applications of Kernel Interpolation

(SecAKI) Here, we review some practical application areas for kernel techniques
which neither fit into Section 11 (SecAL) on Machine Learning nor into the final
sections on solving partial differential equations. These techniques perform gen-
eralized interpolation of smooth functions using unstructured data. The back-
ground was described in Section 3 (SecOR) on optimal recovery, with conditional
positive definiteness added from Section 6 (SecSK). Finally, special techniques
for handling large-scale problems from Section 8 (SecHLS) will occur at certain
places. We group the applications by certain general features that are general
enough to enable the reader to insert new applications into the right context.
The citations will usually not cover the whole application area. We confine
ourselves with an early article and maybe a few illustrative contemporary ones.

10.1 Exotic Data Functionals

This application area uses the fact that kernel techniques can recover functions
from very general kinds of “data” which need not be structured in any way.
Any linear functional λ acting on multivariate functions is allowed, provided
that the kernel K is chosen smooth enough to make λxλyK(x, y) meaningful.
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Guideline 10.1 (guigenfunctional) Kernel methods can handle generalized
recovery problems when the data are given by rather exotic linear functionals.

A typical example [89, 53, 32] concerns postprocessing the output of finite vol-
ume methods. These calculate a set of values fj of an unknown function f which
are not evaluations of f at certain nodes xj , but rather integrals of f over a
certain small “volume” Vj . Thus the functionals in (13, eqlapp) are

λj(f) :=

∫

Vj

f(t)dt, 1 ≤ j ≤ N.

Usually, the domains Vj form a non-overlapping decomposition of a domain Ω.

Then any recovery f̃ of f along the lines of Sections 3 (SecOR) and 6 (SecSK) will
have the same local integrals as f , and also the global integral of f is reproduced.
Thus a postprocessing of a finite-volume calculation produces a smooth function
with correct local “finite volumes”. These functions can then be used for further
postprocessing, e.g. calculation of gradients, pressure, contours etc.

This technique can be used in quite a general fashion. In fact, one can always
add interpolation conditions of the above type to any other recovery problem,
and the result will have the required conservation property.

Guideline 10.2 (guiconlaw) Within kernel-based reconstruction methods, it
is possible to maintain conservation laws.

Another similar case occurs when a certain algorithm produces an output func-
tion which has not enough smoothness to be the input of a subsequent algorithm.
An intermediate kernel-based interpolation will help.

Guideline 10.3 (guireplnonsm) Using kernel-based techniques, one can re-
place a non-smooth function by a smooth one, preserving any finite number of
data which are expressible via linear functionals.

We stated this in the context of conservation here, but it will occur again later
with a different focus.

A somewhat more exotic case is the recovery of functions from orbital deriva-
tives along trajectories X(t) ∈ Rd of a dynamical system

[49]
have the semantics of an
problems
?? (MM) on Meshless Methods, ?? (AL) on machine Learning,
??????????
Terrain Modeling
CAGD recovery on scattered point clouds (Beatson, HW)
Local interpolants for finite volume methods (Sonar/Iske)
Ljapounov basins (Giesl)
Transition between different FEM systems (HW)
Data Mining (Hegland)???
Pointer to MLS
??????????
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11 Kernels in Machine Learning

(SecAL) The older literature on radial basis functions was dominated by appli-
cations in neural networks, in which sigmoid response functions were gradually
replaced by radial basis functions over the years. We do not want to explain this
machinery in detail here, because kernels provide a much more general and flex-
ible technique replacing classical neural networks in learning algorithms. There
are close connections of Machine Learning to Pattern Recognition and Data
Mining, but we have to be brief here and prefer to focus on Learning.

11.1 Problems in Machine Learning

Before we go into details, we provide an introduction to the basic notions of Ma-
chine Learning, starting from the recovery problems in Section 3 (SecOR). These
are subsumed under Supervised Learning, because the expected response yj to
an input xj ∈ Ω is provided by the unknown “supervisor” function f : Ω → R.
If the target data yj can take non-discrete real values, the supervised recovery
problem is called regression, while the case of discrete values is called classifi-
cation. In the latter case the input set Ω is divided into the equivalence classes
defined by the different target values. After learning, the resulting function
f̃ ≈ f should be able to classify arbitrary inputs x ∈ Ω by assigning one of
the finitely many possible target values. For instance, a classification between
“good” and “bad” inputs x+j and x−j can be done by finding a hyperplane in

feature space which separates the features Φ(x+j ) and Φ(x−j ) of “good” and
“bad” inputs in a best possible way. This can be done by linear algebra or
linear optimization, and is an instance of Guideline 2.2 (guifeamapstolin).

In many applications, classification is reduced to regression by

1. embedding the discrete target values into the real numbers,

2. solving the resulting regression problem by some function f̃ ,

3. classifying new inputs x by assigning the discrete target value closest to
f̃(x).

Thus we shall focus on regression problems later, ignoring special techniques for
classification.

Unsupervised Learning has inputs xj ∈ Ω but no given target responses yj
associated to them. The goal for learning is given semantically instead. A
frequent case is clustering, which is classification with just a few target values
whose calculation is part of the problem. Another unsupervised technique is
the determination of anomalies, outliers, or novelties. This can be seen as
a classification where only the “normal” inputs are known beforehand, while
future “abnormal” inputs have to be detected.
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11.2 Linear Algebra Methods in Feature Space

Many pattern recognition or learning techniques apply a linear algebra technique
in feature space, and thus they use Guideline 2.2 (guifeamapstolin). Since the
kernel matrix contains all geometric information on the learning sample, the
algorithms are based on the kernel matrix. A simple novelty detection could,
for instance, just check how far a new feature vector Φ(x) is away from the mean
of the “normal” feature vectors Φ(xj) and declare it “abnormal” if it is “too
far away”. Of course, there are statistical background arguments to support
certain decision rules.

Primitive binary classification can take the means µ+ and µ− of the feature
vectors of the “good” samples x+j and the “bad” samples x−k , and then classify

a new input x by checking whether Φ(x) is closer to µ+ or µ−. Of course, there
are more sophisticated methods with statistical foundations, but the upshot is
that a kernel defined via a feature map is all that is needed to start a linear
algebra machinery, ending up with certain statistical decision rules.

A very important background technique for many pattern recognition and
learning algorithms is to attempt a complexity reduction of the input data first.
If this is possible, anomalies can be detected if they do not fit properly into
the reduction pattern for the “normal” data. The most widely used method for
complexity reduction proceeds via principal component analysis, which in case
of kernel-based methods boils down to a singular-value decomposition of the
kernel matrix followed by projection onto the eigenspaces associated to large
singular values.

11.3 Optimization Methods in Feature Space

But the most important numerical methods in Machine Learning are optimiza-
tions, not linear algebra techniques. For illustration, we take a closer look at
unsupervised learning in the regression case, which in Section 3 (SecOR) was
called a recovery problem. The reproduction-generalization dilemma stated in
Guideline 3.3 (guirepgendil) is observed in Machine Learning by minimizing
both a loss function penalizing the reproduction error and a regularization term
penalizing instability and assuring generalization. These two penalty terms
arise in various forms and under various assumptions, deterministic and non-
deterministic, and they can be balanced by taking a weighted sum as an ob-
jective function for joint minimization. A typical deterministic example is (36,
eqsplineminprob) summing a least-squares loss function and a native space
norm penalty term. Another case is the sup-norm loss function

ǫ := max
j

|yj − f(xj)|

arising indirectly in (19, eqlinconstr) and added to the native space norm to
define the objective function 1

2‖f‖2K + Cǫ to be minimized.
Both cases, as many others in Machine Learning, boil down to quadratic

optimization, because (5, eqKKnorm) allows explicit and efficient calculation of
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the native space norm on the trial space (2, eqk0) via the kernel matrix defined
for the training data. This applies to all techniques using the quadratic penalty

eqquadpen

α ∈ RN 7→ αTAK,Xα = ‖f‖2K (44)

to guarantee stability and generalization. For large training samples, the result-
ing quadratic programming problems have to cope with huge positive definite
kernel matrices in their objective function, calling for various additional numer-
ical techniques like principal component analysis to keep the complexity under
control. Of course one can also get away with linear optimization if the quadratic
term is replaced by minimization of terms like ‖AK,Xα‖∞ or ‖

√
AK,Xα‖∞ with

a similar penalty effect. Again, the kernel matrix is the essential ingredient.
But this technique is not limited to learning algorithms. One can use it

for regularizing many other methods, because one has a cheap grip on high
derivatives.

Guideline 11.1 (guilinlos) Quadratic penalty terms (44, eqquadpen) using
the square of the native space norm of a kernel-based trial function are conve-
nient for regularizing ill-posed problems.

Since this only requires the trial space to consist of translates of a single positive
definite kernel, and since such trial spaces have good approximation properties,
kernel-based methods are good candidates for solving ill-posed and inverse prob-
lems [?].

11.4 Loss Functions

After looking at the penalty for instability, we have to focus on the loss function,
while we assume an at least quadratic optimization using (44, eqquadpen) as
part of the objective function. There are various ways to define loss, but they
have seriously different consequences, not only from a statistical, but also from
a numerical viewpoint. We ignore the vast literature on Statistical Learning
Theory here and focus on computationally relevant questions with implications
for other kernel-based techniques.

The quadratic least-squares loss in (36, eqsplineminprob) has the con-
sequence to add a constant diagonal to the kernel matrix. This is the old
Levenberg-Marquardt regularization of least-squares problems, but it has the
disadvantage that the solution will not have a reduced complexity. The result-
ing coefficient vector α ∈ RN for N traing samples will not necessarily have
many zeros, so that the kernel-based model (14, eqfsimp) has full O(N) com-
plexity.

On the other hand, Guidelines 3.13 (guirerereco) and 3.14 (guipivot) tell
us that a complexity reduction should be possible, using only n << N terms
in the solution (14, eqfsimp). This is achieved by using linear loss constraints
like (19, eqlinconstr) instead of quadratic ones. Then Kuhn-Tucker theory
restricts the optimal solution via the active constraints. In the literature on
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Machine Learning, this is the Support Vector Machine philosophy, because the
feature vectors Φ(xj) for the “active” indices j with |f(xj) − yj | = ǫ are called
“support vectors” for some reason or other.

Guideline 11.2 (guilinlos) Complexity reduction via linear loss constraints
is useful for most recovery situations, deterministic or non-deterministic.

Since many numerical methods can be reformulated as recovery problems, this
has an unexpectedly wide range of possible applications. We use it for adaptive
meshless collocation methods in Section 15 (SecMC). There are good chances
that future methods for PDE solving will take the form of adaptive optimization
routines with linear loss constraints leading to complexity reduction.

11.5 Kernels in Learning Theory

Theoretical research on Learning has close connections to Approximation The-
ory, and it is naturally focusing on kernels [87, 37, 83, 86, 73] Most of this is
based on Statistical Learning Theory. Since we want to stay on the Numerical
Analysis side, we only present the most important connection to approximation
by kernels.

A central question in supervised learning is to have bounds for the necessary
number N of training data (xj , yj) to guarantee the availability of a trained

model f̃ based on these data which has a small generalization error ‖f− f̃‖Ω ≤ ǫ
in some norm ‖.‖Ω over the input domain Ω. This problem can be handled using
Theorem 7.4 (thml2) from Section (7, SecAK). In particular, if the true model

f lies in some Sobolev space W β
2 (Ω) containing the native space for our kernel,

and if X is a quasi-uniform sample set of N points in Ω with fill distance hX,Ω,
we can find an exact data reproduction sf,X based on X such that Theorem 7.4

(thml2) provides an error bound of order hβ−µ
X,Ω ‖f‖Wβ

2
(Ω) for the generalization

error in the Sobolev norm ‖.‖Wµ
2
(Ω). Thus the necessary number N ≈ h

−1/d
X,Ω

of training samples to handle all nonzero unknown functions f ∈ W β
2 (Ω) to an

error ‖f − f̃‖Wµ
2
(Ω) ≤ ǫ behaves like

N ≥ C ·
(

ǫ

‖f‖Wβ
2
(Ω)

) −d
β−µ

for 0 ≤ µ < β. Guideline 3.11 (guiunc) comes up here again, because smooth-
ness of the kernel and the model pays off. There are similar bounds in other
norms, but we do not go into details. Unfortunately, there are no deterministic
results yet which support Guideline 3.13 (guirerereco) in a quantitative way,
reducing N if the reproduction quality is relaxed.
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12 Meshless Methods

(SecMM) Here, we start considering applications of kernels within methods solv-
ing partial differential equations. These are published in abundance, mainly
in journals focusing on computational techniques in engineering and sciences,
and this paper should help the user to sort them out properly. To this end,
we derive some guidelines for using kernels in numerical methods, but this will
need some general considerations first. To set the stage properly, we recall the
fundamental dichotomies between

• strong and weak problem formulations

• test and trial functions

• stationary and nonstationary scales of trial spaces

• implicit or explicit shape functions

• symmetric and unsymmetric methods

and consider

• regularity of solutions

• consistency, i.e. reproduction of polynomials

• adaptivity

• necessity of global spatial discretizations

• numerical integration.

These issues are intimately related, as we shall see.

12.1 Strong and Weak Problems

Strong problems define solutions as functions satisfying a partial differential
equation and certain boundary conditions pointwise, employing evaluations of
functions and classical derivatives. Weak problems replace point evaluations
by local integrations against test functions or (weak) derivatives thereof, intro-
ducing numerical integrations. Both apply “tests” to check whether a “trial”
function is a solution. Their difference is not on the “trial” side, but on the
“test” side. We shall come back to this later.

Strong methods can be called “integration-free”, and this sometimes seems
to be more important than the notion of “mesh-free”. As far as point evalua-
tions are concerned, there is no big difference between weak and strong methods,
since almost all methods for solving weak problems apply numerical integration
techniques using strong function values. The crucial point of weak formulations
is to apply integration by parts to the integrals of derivatives against test func-
tions, thus reducing the necessary order of differentiability and allowing Hilbert
space methods like Dirichlet’s Principle.
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Strong formulations imply stronger regularity assumptions, i.e. classical
differentiability with Hölder continuity of the highest derivatives occurring in the
differential equations. Weak formulations can get away with lower regularity and
lower-order derivatives, but the derivatives are not classical 3 ones. While this
argument is independent of numerical methods, regularity is closely connected
to them, since convergence orders usually increase with regularity.

Guideline 12.1 If the PDE problem will have a rather regular solution, the
user should apply techniques that make use of this regularity, and can choose
between weak and strong problem formulations. If the solution will definitely
have low regularity, the user should first try to convert the problem to another
with more regularity, e.g. by giving expected singularities or discontinuities a
special treatment. If the final problem still leads to a solution with low regular-
ity, the user is forced to pose a weak problem, but must expect poor numerical
performance of any numerical method.

If there is enough regularity to have a choice between weak and strong problems,
the connection of the problem formulation to numerical integration becomes im-
portant. Weak formulations introduce additional numerical integrations which
are not necessary for strong formulations. These numerical integrations increase
the algorithmic complexity and introduce a possibly avoidable source of numer-
ical errors.

Guideline 12.2 Strong problem formulations avoid certain numerical integra-
tions, but they have to assume higher regularity than weak formulations.

The integration error can be quite serious [33, 10] and needs a careful selection
of integration techniques. In particular, if regularity is high to allow high-order
methods like hp finite elements in a weak formulation, the integration error must
be increased properly to adjust to the convergence order, so that the final error
is not dominated by the one induced by numerical integration. This makes it
questionable to go for a weak problem formulation in case of high regularity.

12.2 Trial Functions

If we rule out purely discrete techniques like plain finite differences, the ap-
proximate solutions of partial differential equations are usually represented as
linear combinations of trial functions. These come in a great variety, e.g. as
polynomials, piecewise polynomials (splines, box splines, or finite elements),
shape functions, particle functions, generalized finite elements, wavelets, or ker-
nel translates. Furthermore, they do not come single, but usually as a whole
scale of spaces, and then the question of stationary or nonstationary scaling
comes up as in Section 7 (SecAK). Let us have a closer look at trial spaces in
general in order to see where kernels are useful.

3Though politically incorrect, it should be pointed out that nobody can perform a numerical

calculation of a weak derivative or a weak solution. Consequently, “weak” notions are useful

for theoretical analysis only, not for calculations.

45



Guideline 12.3 (giutrialprop) Trial functions should

• provide a good approximation to the solution,

• be effectively evaluable,

• easy to modify, and

• easy to integrate numerically, in case of weak problems.

They should only in the latter situation be dependent on the test side. We now
shall look at these properties one by one, starting with approximation properties.

In many cases, e.g. for finite elements, scales of trial spaces attain their
approximation power via a geometric domain discretization of the underlying
domain up to some granularity h describing something like the maximum di-
ameter of a local polyhedral support of a trial function. Certain methods using
shape functions or translated kernels do not split the domain geometrically,
but use a cloud of points that “fills” the domain so that h is a “fill distance”
like (32, eqfilldistance) which measures the radius of the largest ball within
the domain but without one of the points. In both cases, there is s domain
discretization involved.

But as far as approximation power is concerned, it is by no means mandatory
that a scale of trial spaces requires a geometric global domain discretization of
any kind.

Guideline 12.4 (guismalltrial) If the expected solution of a problem has a
good approximation from a low-dimensional space of global functions, the trial
space should be selected accordingly, without discretizing the domain at all. If
singularities of known form and place are to be expected, they should be included
into the trial space, no matter what the actual numerical method is.

Note that a missing space discretization for the trial space is just one aspect
when looking at “meshless methods”. There may be integration nodes in certain
cases, and there may be a space discretization for the test side which we have
not yet looked at. Currently, most meshless methods are still using global
space discretizations, but allow to add adaptive local refinement when necessary.
However, the user should keep in mind that spectral methods [45] or general
trial spaces without space discretization are to be considered as alternatives
when the expected properties of the solution allows them.

Guideline 12.5 High approximation orders are not related to domain discretiza-
tion, but to smoothness. They are achievable if the solution of the problem is
sufficiently smooth. This is independent of the trial space. But they also require
a trial space that can make use of that smoothness.

Such spaces must have higher smoothness themselves, as in the p-version of the
finite element method. A trial space with good approximation properties should
thus have p-adaptivity in the sense that it guarantees the highest possible ap-
proximation order attainable for the (unknown) smoothness of the solution. By
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Section 7 (SecAK) we know that nonstationary scales kernel-based trial spaces
have such a p-adaptivity, but theory there still requires a space discretization
with a small fill distance h. It is a future challenge to provide a sound math-
ematical basis for h-type adaptivity like the support vector technology within
machine learning. Adaptive optimization strategies for PDE solving should se-
lect spatial resolutions locally where needed, and automatically yield optimal
local approximation orders depending on the smoothness of the solution.

Some applications require good approximations of higher derivatives of the
solution, e.g. if pressure or stress is to be evaluated from displacements. This
calls for smooth trial functions.

Guideline 12.6 Because the node connectivity problems of piecewise polyno-
mials increase dramatically with smoothness requirements and space dimension,
it is much easier for meshless kernel-based methods than for finite elements to
generate smooth trial spaces, in particular for higher space dimensions.

Standard results concerning numerical methods for solving ODEs suggest
that good convergence orders are obtained by high consistency orders, provided
that stability is satisfied. This does not generalize easily to PDE problems, and
is not directly related to the approximation power of trial spaces. However, the
term consistency is present in quite a number of papers on meshless methods,
and we shall later describe its questionable use there.

We now leave approximation quality and focus on evaluation efficiency of
trial functions. Though not standard in the literature, we distinguish between
explicit and implicit evaluation of trial functions. For explicit evaluation, there is
a simple formula like exp(−0.3∗‖x−xj‖22) for each trial function, and there is no
need to look up a number of other nodes or to evaluate geometric data. This is
the standard technique for kernel-based trial spaces. Implicit evaluation means
that each trial function value is the result of a subroutine call to a function that
depends on multiple data in a somewhat complex and geometry-dependent way.
This applies to finite elements and all “shape functions” which are the result of
pointwise local optimizations like moving least squares. If applications need to
evaluate the solution on extremely many points, implicit trial spaces may not
be the best choice. It often happens that the calculation of the parameters of a
solution is faster than the generation of all values needed for visualization, such
that evaluation becomes more important than solving. A-posteriori display of
a scattered-data interpolant to the actual solution along the lines of Section 7
(SecAK) is always possible, of course, but it is a problem of its own and induces
additional errors.

Guideline 12.7 If an approximate solution composed of trial functions must
be evaluated on very many points, explicit meshless representations have an
advantage.

Another efficiency argument comes up when the dimension of the trial space
is large. This should be avoided following Guideline 12.4 (guismalltrial),
but it always occurs if the trial space is using a space discretization with fine
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granularity. Even if there is not too much connectivity between geometric in-
formation, i.e. if the method is meshless, one needs to have a fast method for
range queries retrieving neighbors of nodes. Similar problems always come up
when trial spaces need some localization. There are various ways to cope with
it, e.g. wavelets, multipole and multilevel methods, but they all seem to be
closely connected to the choice of a useful basis, either a-priori or adaptively.
This brings us to the next issue: the adaptivity properties of trial spaces.

The really serious situations for the choice of the trial space occur when
singularities will arise, but at places not known beforehand. This is the case
for certain fluid dynamics, advection-diffusion, or crack propagation problems.
However, it does not make sense to use a fine global space discretization when
there will be just a local effect that calls for a finer local resolution. This is
observed by plenty of adaptive methods. They sometimes just re-mesh a global
space discretization locally where necessary, or they add new and more flexible
elements into the fixed basic triangulation, but both of these tasks are not
easy. Particle- or kernel-based methods using clouds of scattered points can
adapt by adding or deleting points where necessary, but they usually do not
need to update geometric contingency information that arises with meshes or
triangulations. This is the punchline when meshless methods are characterized
[25] as “constructing the approximation entirely in terms of nodes”. The cited
article considers “meshless approximations based on

• moving least squares

• kernels

• partitions of unity”

and states that these “three methods are in most cases identical except for
the important fact that partitions of unity enable p-adaptivity to be achieved”.
Furthermore, kernels occur in all of these three, and this is another reason
why kernels are a central tool in meshless methods. Some authors even talk
of “truly meshless methods” when they want to stress that they do not need
numerical integration, but we suggest to state precisely to which extent spatial
discretizations need to be maintained, and whether the trial functions can be
accessed explicitly or implicitly.

12.3 Kernel-Based Trial Spaces

(SecKBTS) At this point, we should show how “representability in terms of
nodes” is understood in meshless methods and how it is related to kernel-based
trial functions, establishing a very close connection of nearly all meshless meth-
ods to kernels. The idea of “nodes” is roughly the same as the “centers” for
standard kernel approximations as in Section 7 (SecAK). In the simplest case,
the trial space should be spanned by multivariate functions ϕi(x, xi), i ∈ I,
which are functions of x ∈ Rd depending on a single “node” or “center” or
“particle position” xi ∈ Rd. This function can be seen as a “smoothed particle”

48



as in smoothed particle hydrodynamics (SPH), and it is called shape function
or particle function in the literature. For a meshless method, there should be
no complicated geometric connection between nodes like a triangulation of the
convex hull of the nodes with the nodes as vertices (this could then be called a
“mesh”). It should be easy to extend the trial space by adding some new nodes
and associated trial functions (this is called “h-adaptivity” in FEM terms) with-
out updating the connectivity information. In this sense, meshless methods can
be seen as an alternative to adaptive finite element methods.

For many good reasons, the functions ϕi(x, xi) in meshless methods should
be

• translation-invariant and

• compactly supported around the node xi.

This implies that they should necessarily have the form
eqphiker

ϕi(x, xi) := K (x− xi) , i ∈ I (45)

with a compactly supported translation-invariant kernel K of small support.

Guideline 12.8 Translation-invariant trial functions for meshless methods are
always kernel-based, if they are dependent on a single node.

This implies that trial spaces spanned by functions of the form (14, eqfsimp)
occur canonically in meshless methods, and the previous sections have accumu-
lated quite some information on those spaces.

But the literature on meshless methods uses also “shape functions” defined
implicitly via local processes like moving least squares. Then the resulting trial
functions depend on more than one node, though this is often ignored in the
notation. In fact, for each node xi there is a trial function ϕi depending on
xi and some if its neighbors, as far as they fall into the support of the weight
function associated to the node xi. Kernels occur here only via the weight
functions used, and they need not be positive definite. For scattered nodes, the
resulting trial functions will not be translation-invariant.

For MLS-based shape functions, we know from Section 7 (SecAK) that poly-
nomial reproduction

eqpolrepgen

∑

i∈I

p(xi)ϕi(x) = p(x) for all x ∈ Rd, p ∈ P d
m (46)

can be achieved under mild additional assumptions, where P d
m stands for the

space of d-variate polynomials of order ( = degree +1 ) at mostm. Note that the
“partition of unity” property of Section 8 (SecHLS) coincides with polynomial
reproduction of order one or degree zero.

Polynomial reproduction properties are sometimes called consistency condi-
tions, and very many papers seem to understand reproducing kernels via the
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above reproduction property, not via (8, eqrepro) in Hilbert spaces. Some also
seem to assume that convergence follows as soon as there is a consistency condi-
tion of some nonnegative order in the above sense, but this argument has no solid
foundation, since the usual Lax-type theory understands consistency differently
and is modeled for discretizations of time-dependent problems. Mathematicians
will find plenty of open questions concerning convergence and error bounds of
meshless methods, while many engineers seem to believe to be on solid ground
once they have what they call consistency.

Sometimes the notion of completeness is used in the sense of convergent
approximate polynomial reproduction, e.g. linear completeness meaning conver-
gent approximate reproduction of linear functions [25]. This is different from
the usual notion of completeness in mathematics, and it must be used with ex-
treme care, in particular when assuming that it implies convergent approximate
reproduction of piecewise linear functions.

Guideline 12.9 Within meshless methods, the notions of consistency and com-
pleteness should be used with caution.

Anyway, the polynomial reproduction property (46, eqpolrepgen) appears
in many meshless methods. In fact, recent surveys [57, 58, 48] of meshless meth-
ods focus entirely on methods with exact polynomial reproduction. However, it
must be stated clearly that exact polynomial reproduction is not necessary for
convergence, as is shown, for example, by the rigorous convergence analysis of
the generalized finite element method [9], and the symmetric [46] and unsym-
metric [80] meshless collocation methods. Polynomial reproduction appears to
be popular because it is necessary in convergence arguments using Strang-Fix
conditions or the Bramble-Hilbert lemma, but it is not mandatory to use these
tools, as follows from Section 7 (SecAK). By Theorem ?? (TheSobIntCon), op-
timal approximation orders in Sobolev spaces are attained without it, and in
very general situations, not only for interpolation from nonstationary scales of
kernel-based trial spaces.

In view of these remarks, future work should remove exact polynomial repro-
duction from the assumptions of many meshless methods. Instead, care must be
taken to conserve physical properties like mass and momentum in applications.
This is only loosely related to polynomial reproduction.

After this detour into polynomial reproduction we still have to look at a class
of methods that arrives at meshless trial spaces via a slightly different approach.
Smoothed Particle Hydrodynamics (SPH) use spatial kernel approximations that
we called discretized kernel convolutions in Section 7 (SecAK) with their main
convergence result given by Theorem ?? (Theconvconv). This means that a
suitably scaled and normalized kernel K is chosen such that

eqcontconv

f ≈ K ∗ f (47)

holds, and a discretization of the convolution integral implies

f(x) ≈
∑

i∈I

wiK(x, xi)f(xi) for all x ∈ Rd
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with integration weights wi at integration nodes xi. The linear unknowns here
are f(xi), while the points xi are interpreted as particle positions and can be
considered as nonlinear parameters whose number and value can change. The
name of the technique is derived from the fact that the right-hand side writes
a function or vector field as a sum over the local kernel-controlled influences of
discrete particles at the points xi. The logic of SPH thus does not directly aim
at trial spaces, but rather parameterizes fields describing flows in the form (14,
eqfsimp) we had in the beginning, by using the right-hand side of the above
approximation. All other operations, e.g. setting up momentum equations,
are performed using the parametrized flow. Since the background problems
are time-dependent, the above spatial discretizations lead to large systems of
ordinary differential equations, where time discretization is another issue we do
not address here.

To achieve a good approximation in the continuous convolution error (47,
eqcontconv), Theorem ?? (Thecontconv) tells us that the kernel should satisfy
certain moment conditions, i.e. it should have unit integral and vanishing higher
moments. If the integration scheme is exact for low-order polynomials, this
implies the partition-of-unity property for the trial functions wiK(·, xi), but
there will be no reproduction of higher-order polynomials. This problem can
be removed by dropping the philosophy of discretizing a convolution integral,
and going radically over to functions (45, eqphiker) with exact or approximate
polynomial reproduction. This is called the reproducing kernel particle method,
when the rest of the SPH is maintained, i.e. when discretized systems are
derived from parametrized kernel-based field representations some way or other.
We refer the reader to a recent survey article [57] and a book [58] on SPH
and RKPM techniques, containing long lists of references, and describing many
variations induced by additional physical constraints.

12.4 Residuals, Test Functionals and Functions

(SecRTfF) After looking at the trial side, we should now focus on the test side.
If we assume that the trial side has somehow produced some trial function which
is a candidate for an approximate solution of the partial differential equation
and the boundary conditions, we want to conclude that this trial function is
close to the real solution. This is the job of the test side, and it is quite natural
that here the necessity of a space discretization is much more obvious than on
the trial side.

But we postpone discretization on the test side for a while. If we rewrite the
differential equation and the boundary conditions as differences L(u) − f = 0
which should be zero for the exact solution u, an approximate solution ũ should
make the residuals L(ũ) − f small everywhere. Usually, to conclude that the
error u− ũ is small, it suffices to make sure that the residuals are small, because
the solution of any well-posed linear problem will be continuously dependent on
the data, implying

ũ− u small, if all residuals L(ũ)− L(u) = L(ũ)− f are small
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where “all” means residuals of differential equation(s) and boundary condi-
tion(s) altogether, as many as present in the problem. This means that “testing”
usually should make sure that the residuals are zero or at least small globally.
Numerical techniques aiming at globally small residuals are often called methods
of weighted residuals.

Guideline 12.10 Small residuals imply small errors for well-posed linear prob-
lems, i.e. if the solution is continuously dependent on the data. But one must
make sure that the notions of “well-posedness” and “small” are consistently
defined.

In fact, if we pack differential equations and boundary conditions into one single
linear operator L, continuous dependence requires fixing spaces U and F for the
solution u and the data f of the problem L(u) = f such that

‖u‖U ≤ C‖L(u)‖F

holds, i.e. L has a continuous inverse taking the data into a solution having
these data. Then one must make sure that “small” residuals for an approxi-
mate solution ũ means ‖L(u) − L(ũ)‖F to be small, nothing else. Thus, even
when discretization of residuals is not an issue, the choice of a residual norm is
important.

This is closely connected to the distinction between strong and weak prob-
lems. For strong problems, the residual norm usually is something like a ‖.‖∞
norm, while weak problems will use “weaker” norms like ‖.‖2. But in most cases
small residuals in the ‖.‖∞ norm will be small also in the ‖.‖2 norm, such that
even if the ‖.‖2 norm is the correct one for continuous dependence, users are safe
if they minimize ‖.‖∞ instead, i.e. solving a strong instead of a weak problem.
This requires the trial space and the data f to have enough smoothness to make
‖L(ũ)− f‖∞ to be well-defined, but this usually is not a big problem in many
applications.

Guideline 12.11 If trial functions and data are smooth enough, users can often
use a strong formulation even if a corresponding weak formulation has continu-
ous dependence.

There is a natural class of numerical methods related to weighted residuals, i.e.
methods that globally optimize residuals in the correct residual norm. These
will always lead to an optimization problem instead of a linear system. In case
of L2 residual minimization, this is the well-known method of (continuous) least
squares, and there the optimization problem is quadratic and boils down again
to a linear system of equations. With weak problems it shares the disadvantage
of requiring integration, while it has the additional disadvantage of working
with higher-order derivatives than weak techniques. It also requires additional
regularity in excess of L2 to conclude that numerical integration of residuals has
a controllable error.

For L∞ residual minimization of residuals of problems in strong form, one
gets a semi-infinite linear optimization problem. Most users will not know that
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there are good numerical techniques for solving such problems. Furthermore,
Kuhn-Tucker conditions will help to reduce complexity, as for learning algo-
rithms via support vector machines, and adaptivity is easy to implement. Thus
there is some hope that linear optimization codes will be very helpful in the
future when it comes to solve partial differential equation problems.

For both cases, there is a trial function with small residuals, if the true
solution u has a good approximation û from the trial space Utrial. But the
latter is just a question from approximation theory which is dependent on the
solution u, the trial space Utrial, and the norm ‖.‖U in the solution space U only,
not on any partial differential equation. Thus user should keep the first part of
Guideline ?? (guitrialprop) in mind without looking at the partial differential
equation. Then the numerical method for solving a PDE problem, in weak or
strong form, just has to make sure not to discard the existing unknown good
approximation û, while it produces another approximation ũ ∈ Utrial based on
PDE data which is not too much worse. For residual minimization algorithms,
this means that there exists an admissible trial function yielding small residuals
‖L(u)−L(û)‖F , such that the final optimal solution cannot have worse residuals.
Error bounds and convergence results will then follow the simple estimates

‖u− ũ‖U ≤ C‖L(u)− L(ũ)‖F
= C inf

v∈Utrial

‖L(u)− L(v)‖F
≤ C‖L(u)− L(û)‖F .

Guideline 12.12 Residual minimization works, if the problem is well-posed
and if the trial space contains a good approximation to the solution.

Because exact and global residual minimization cannot be carried out numeri-
cally, we now look at discretization on the test side. It means that only finitely
many “tests” are performed. Discretization of a strong problem means taking
a finite subset of points where the differential equation or boundary conditions
are satisfied. This is the standard technique of collocation. For weak problems,
discrete testing means to take inner products of the residuals with finitely many
test functions, and then the residuals are not zero or small, but orthogonal to
the test space spanned by test functions. In both cases one has to make sure
that small results of discrete testing lead to small results in (theoretical) infinite
testing. This is the most serious part of any error or convergence analysis for
numerical methods. It usually takes the form of a stability condition relating the
test and the trial space, and making sure that a small discrete residual on the
trial space implies a small full residual on the trial space. We shall see examples
later, but we can already state at this point that there should be no nonzero
trial function û with vanishing test residuals, if we want to have error bounds,
because all functions ũ+α · û for arbitrary α ∈ R would have the same discrete
test residuals and spoil the error bound.

Guideline 12.13 The discretized residual norm on the test side should at least
work like a norm on the trial space.

????????????????
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12.5 Symmetric and Unsymmetric Methods

Consequently, the test side may need more attention than the trial side, and
this leads us to the distinction between symmetric and unsymmetric methods.
Symmetric methods use discretizations with

• the same degree of freedom on the trial and test side,

• closely related test functionals and trial functions,

• square and possibly positive definite matrices.

For weak problems, this means that trial and test functions coincide, and usually
the standard Galerkin method is employed, yielding a positive definite square
matrix. This applies to finite elements and several generalizations, e.g. the
GFEM [9] described in detail in this series. The GFEM is a meshless method
which enlarges the admissible trial spaces far beyond classical piecewise polyno-
mial finite elements, but it still uses the basic symmetric Hilbert space formula-
tion of the finite element method. In its actual form, the GFEM uses stationary
scales of trial spaces spanned by a partition of unity. Since it is a symmetric
Galerkin technique, the trial functions and the test functions coincide. Com-
pactly supported kernels occur naturally in the partition of unity, but they need
not be positive definite. Since the current theory uses stationary approxima-
tions (see Section 7 (SecAK)) in its scales of local trial spaces, the only kernels
providing useful approximation orders are conditionally positive definite with
infinite support, like multiquadrics or thin-plate splines. When local trial spaces
are generated by moving least squares (see Section 7 (SecAK)), weight kernels
occur again. But most applications just augment finite element spaces by useful
additional trial functions, e.g. for treating singularities. However, the overall
axiomatic structure of the GFEM theory [9] suggests that it should be possible
to extend the theory of the GFEM to allow nonstationary scales of kernel-based
trial spaces with high approximation orders.

For strong problems, the test side contains point evaluation functionals and
there are no test functions. But there also is a symmetric method taking the
trial functions as results when these functionals are applied to one argument of
a positive definite kernel. This establishes a close relation

λ↔ vλ := λxK(x, ·)

between test functionals λ and trial functions vλ which is only possible because
kernels are involved. We call this symmetric collocation and deal with it in
Section 15 (SecMC).

Both kinds of symmetric methods can be rewritten as an approximation or
optimization problem in Hilbert space, and their theoretical foundation strongly
relies on this fact. This comes close to Guideline 3.15 (guiadaopt), because the
problem itself is a quadratic optimization problem solved via a linear system.

?????????? Something on the convergence proof technique for symmetric
problems?
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Let us now look at unsymmetric methods. In the strong case, collocation [54]
using nonstationary scales of trial spaces of radial basis functions, in particular
multiquadrics occurs in many applications.

????? Survey?
Theoretical support was only given recently [80], proving high convergence

rates depending on the regularity assumptions. We provide details in Section
15 (SecMC).

Unsymmetric methods for weak problems usually take the form of Petrov-
Galerkin schemes, where trial and test functions differ. Their basic theory [38]
was established for trial spaces spanned by multivariate polynomial splines and
for elliptic problems, making use of coercivity. More modern applications [26, 27]
have the same theoretical basis, but also do not apply kernel techniques.

A more radical approach to solve weak problems by an unsymmetric Petrov-
Galerkin technique is the Meshless Local Petrov-Galerkin (MLPG) technique
developed by S.N. Atluri and his collaborators [4] with a very readable short and
recent survey [5] and two books [3, 6]. It uses a variety of test and trial functions,
and due to its general form it can claim to formally include many other methods.
However, there is no general convergence proof or error estimate available unless
the method is restricted to well-known special cases like symmetric finite element
techniques.

??????????????????????????

12.6 Numerical Integration

(SecNI)
Let us finally focus on numerical integration questions, and let us look at

weak problems first. The integrals for stiffness matrix entries within weak prob-
lems usually contain products of test and trial functions or derivatives thereof.
To make integration easy and precise, test and trial functions have to be cho-
sen carefully and should be closely related. The standard choice of piecewise
polynomial trial and test functions in the finite element method achieves this,
since the integrals can be done exactly in case of polyhedral domains, though
one has to keep track of the polyhedra carefully. The integration of test func-
tions against arbitrary functions is required for the inhomogeneities, but this is
an issue of the test side, not of the trial side. Anyway, integrating piecewise
polynomials on polyhedra needs some domain triangulation first (the primary
mesh), and then a careful choice of interpolation nodes (or transformation to
standard elements) for the integration (the integration mesh). Even “meshless”
methods, if they require integration, may sometimes need an integration mesh
and are subject to influences of integration error, if the are applied to weak
problems.

Using translates of radial kernels on both the trial and test side of weak
problems can be equally efficient as finite elements are, if the integration domains
do not interfere with boundaries, because the integrals are univariate radial
functions which are either analytically known or can be pretabulated. Certain
variations of the MLPG method can take advantage of this. Integration of
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“test” kernels against given functions may be simplified by first representing
the function in terms of translates of a “trial” kernel, followed by integrations
of kernels against kernels, which again is easy if no boundaries are in the way.
In presence of nontrivial boundaries, all trial and test functions cause problems,
unless the real boundary is replaced piecewise by boundaries of supports of trial
and test functions.

For problems in strong form, this discussion is not necessary. The trial func-
tions can be chosen freely to satisfy the first three properties. These properties
are independent of PDE solving. We shall take a closer look at them, but from
a more general point of view.

12.7 Classification of Meshless Methods

(SecCoMM)
????????????????????

12.8 Meshless Local Petrov-Galerkin Method

(SecMLPG)
MLPG
??????????

12.9 Local Garbage

The actual numerical calculations are carried out with these functions, using
basis coefficients or function values or (strong) derivative values. The choice of
good bases is a crucial issue, as is the approximation power of the trial space
spanned by the trial functions. We should note here that one possible definition
of meshless methods [25] marks them as “constructing the approximation en-
tirely in terms of nodes”, which is a statement concerning the representability
of the basis of the trial space, ignoring other issues like weak or strong problem
formulation or necessity of numerical integration.

???????????????????
Furthermore, the literature on meshless methods uses the term “Kronecker

delta property” if
ϕi(xj , xi) = δij for all i, j ∈ I

holds, i.e. if the basis is Lagrangian with respect to the nodes.
In both cases, any discretization induces the problem to generalize from

finitely many conditions or equations to all necessary equations.

13 Kernel Methods for Inverse Problems?

(SecKiIP)
????????????????????
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14 Special Meshless Kernel Techniques

(SecSWKT) Following Guideline 6.1 (guipdeker) along the techniques of Section
6 (SecSK), Kernel Engineering can provide kernels which are closely connected
to standard differential equations. This is used by certain numerical methods
to be described in this section.

14.1 Dual Reciprocity Method

(SecDRM) This misleading name stands for a technique [?] arisen from boundary
element methods. The basic idea is to split the problem into an inhomogeneous
and a homogeneous subproblem with respect to the differential equation. A
problem L(u) = f with a linear differential operator L and linear boundary
conditions B(u) = g is treated first by constructing a particular solution uP
with L(uP ) = f without regard of boundary values. Then the homogeneous
problem L(u) = 0 is solved by some function uH under the boundary conditions
B(u) = g −B(uP ) to get the final solution as u := uP + uH .

The first problem uses trial spaces of known particular solutions. These are
easy to construct for kernel-based trial functions. The second problem makes use
of a-priori information on homogeneous solutions either via integral equations
or fundamental solutions, providing trial spaces of homogeneous solutions via
a special kernel called the fundamental solution of the differential operator L.
Due to this close connection to kernels, we have to treat this technique in some
detail.

Guideline 14.1 The Dual Reciprocity Method can be applied to well-posed lin-
ear problems with well-known fundamental and particular solutions which have
good approximation properties.

14.2 Method of Particular Solutions

(SecMPS) To find a particular solution uP with L(uP ) = f without regard of
boundary values, one can use trial functions ui whose images fi := L(ui) under
L are well-known and numerically available. Then the right-hand side f of the
differential equation is approximated by a linear combination

f̃ :=
∑

i

αifi

of the fi to some small error ‖f − f̃‖F in some suitable function space F , and
the approximation

ũP :=
∑

i

αiui

is the canonical approximation to a particular solution uP . Note that this part of
the algorithm is an approximation problem which is completely independent of
partial differential equations. After construction of f̃ we know that the residual
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L(uP − ũP ) = f − f̃ is small, but we have to postpone a thorough error analysis
until we have looked at the homogeneous problem and boundary conditions.

Of course, there are plenty of ways to produce good approximations f̃ to f ,
provided that the approximation properties of the functions fi are well-known.
But it may be a problem to find functions fi which are particular solutions and
have good approximation properties. Starting from well-approximating multi-
variate functions fi like finite elements, it is often hard or impossible to find
the functions ui with L(ui) = fi. On the other hand, starting with nice func-
tions ui will only rarely lead to functions fi = L(ui) with good approximation
properties.

But things can be easy if kernels are used. The simplest way is to take a
smooth symmetric translation-invariant positive definite kernel K and define

ui := K(· − xi) and fi := LK(· − xi)

for trial centers xi. If the operator L is elliptic with constant coefficients, the
resulting kernel LK for the fi will be positive definite again, as inspection
of Fourier transforms shows. Now all techniques of Section 7 (SecAK) can be
applied to reconstruct f approximately using the trial functions fi.

If the operator is not elliptic, the kernel LK will not be positive definite. In
such cases, the reverse strategy can be helpful, starting with fi := K(· − xi)
using a positive definite kernel K and finding another kernel KL such that
L(KL) = K. This new kernel need not be positive definite, but since it is not
used for approximation, there is no problem here.

Guideline 14.2 (guiDRM) A natural kernel-based strategy for the Method of
Particular Solutions is to have pairs ui, fi with fi = L(ui) = K(· − xi) such
that one can perform approximation of f by the standard translates of the kernel
K.

The literature contains many such pairs, and we cite [?] for a selection.

14.3 Method of Fundamental Solutions

(SecMFS) Once the problem L(u) = f with boundary data B(u) = g is trans-
formed into homogeneous form L(u) = 0, B(u) = g − B(ũP ) =: gH by the
method of particular solutions, the method of fundamental solutions takes over.
It uses a special kernel F called the fundamental solution of L(u) = 0 such that
LF (·, x) = δx in the distributional sense. These kernels are well-known for a
number of linear operators, and we presented those for the iterated Laplacian in
Section 6 (SecSK), i.e. the thin-plate spline of (28, eqTPS) and the polyharmonic
splines of (29, eqPHS). This can be generalized to linear elliptic differential oper-
ators with constant coefficients, but we do not want to go into details and refer
the reader to the literature on Fourier methods in partial differential equations
[?] and on special fundamental solutions [?]. However, the kernel F provid-
ing the fundamental solution will have a singularity “on the diagonal”, i.e. for
F (x, x) or derivatives thereof. For second-order equations in dimension 2 or
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more, F itself is already singular, while for higher order one gets singularities in
the derivatives of F . Singular kernels are not directly covered by the standard
theory of positive definite kernels, but they work fine in a generalized sense
avoiding point evaluation functionals.

Once a fundamental solution F is at hand, there are various ways to generate
trial functions solving the homogeneous differential equation. Before we describe
these techniques, we want to look at the error and convergence analysis. The
trial functions are used for approximating the prescribed boundary values gH on
the boundary. If a numerical scheme comes up with a trial function ũH satisfying
L(ũH) = 0 and with a small residual B(ũH) − gH = B(ũH) − B(u) + B(ũP ),
we use ũ := ũH + ũP for our full solution and residuals

‖L(ũ)− f‖F = ‖L(ũH + ũP )− f‖F
= ‖L(ũP )− f‖F
= ‖f̃ − f‖F

‖B(ũ)− g‖G = ‖B(ũH + ũP )− g‖G
= ‖B(ũH)− gH‖G

for a suitable norm on a space G where the boundary values live. If the problem
is continuously dependent on the data in the sense that an a-priori inequality

eqcontdep

‖u‖U ≤ C(‖L(u)‖F + ‖B(u)‖G) (48)

holds, and if the exact solution u exists and lies in U , then there is an error
bound

‖ũ− u‖U ≤ C(‖L(ũ− u)‖F + ‖B(ũ− u)‖G)
= C(‖L(ũ)− f‖F + ‖B(ũ)− g‖G)
= C(‖f̃ − f‖F + ‖B(ũH)− gH‖G)

reducing the overall error to the error of the residuals. Thus the Dual Reci-
procity Method has a solid mathematical foundation once continuous depen-
dence holds and the residuals are small. This confirms Guideline 14.2 (guiDRM).
For elliptic operators satisfying a maximum principle, these error bounds can
be improved, provided that the spaces F and G are chosen appropriately.

However, it remains to prove that certain approximation schemes in the
methods of particular and fundamental solutions lead to small residuals in
the correct spaces needed for continuous dependence. If methods of Section
7 (SecAK) based on positive definite kernels are applied within the method of
particular solutions, there are no serious problems, because there are good error
estimates like (??, eqSobBound) in Sobolev spaces on bounded domains. We
thus are left with the analysis of the approximation power of the method of
fundamental solutions.

A particularly simple way to generate trial functions satisfying the homo-
geneous problem L(u) = 0 is to proceed like in Section 7 (SecAK) by taking
linear combinations of translates F (·, xi) of the fundamental solution. This is
an approximation problem
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eqdiscrMFS

gH(t) ≈
∑

j

αjF (t, xj), t ∈ Γ (49)

to be posed on the boundary Γ of the domain. But in order to avoid singularities
of trial functions inside the domain or on the boundary, the trial centers xi
should be placed outside the domain. But then the theory of Section 7 (SecAK)
does not apply, because the approximation domain does not contain the centers
and there is no notion like a “fill distance”. However, this method performs
very well in practice [?] if the outside centers are placed with care. For very
special domains and smooth boundary data the method can be proven to have
spectral convergence [?], but a general theory is still missing.

A well-known and much older approach is to place infinitely many trial
centers right on the boundary and to take a weighted sum over all such translates
of the fundamental solution. This leads to the singular single-layer potential
integral equation

gH(t) =

∫

Γ

α(x)F (t, x)dx, t ∈ Γ.

Note that this is a non-discrete form of (49, eqdiscrMFS). Due to the singular-
ities of F , this equation cannot be solved strongly, but it can be solved weakly
e.g. via finite elements on the boundary. Such techniques are called boundary
element methods and have a rich literature [?].

???????? Guidelines for practical work
Variations of this approach are possible by replacing F (·, x) by certain linear

functionals acting on F (·, x) with respect to the second argument x. These new

kernels, like the normal derivative ∂F (·,x)
∂n will usually preserve the property

that action of L on the first argument results in zero. The standard case is
the integral equation of the double-layer potential, but there are plenty of other
possibilities that are yet unexploited, e.g. replacing F (t, x) by local integrals
around x of F (t, s) with respect to s in order to remove the singularities. A
special case of the is the recent boundary knot method [?, ?].

14.4 Divergence-free Kernels

(SecDFK)
.........
????????????

15 Meshless Collocation

(SecMC) Within the classification of meshless methods in Section 12 (SecMM),
the techniques of this section solve partial differential equations in strong form,
using collocation on the test side and avoiding numerical integration completely.
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On the trial side, they use nonstationary scales of explicit kernel-based trial
functions. They come in a symmetric and an unsymmetric form.

In both cases, a given partial differential equation L(u) = f and various
boundary conditions of the form B(u) = g are discretized by point evaluations
of both sides in certain collocation nodes. For instance, a Poisson problem on
a domain Ω with Dirichlet conditions u = gD on ΓD ⊆ Γ := ∂Ω and Neumann
conditions ∂u

∂n = gN on ΓN ⊂ Γ can be discretized by a set Λ := {λ1, . . . , λN}
of test functionals consisting of three parts

Λ = Λ1 ∪ Λ2 ∪ Λ3

Λ1 := {λ1, . . . , λN1
}

λj(u) := −∆u(xj), xj ∈ Ω, 1 ≤ j ≤ N1,
Λ2 := {λ1+N1

, . . . , λN2
}

λj(u) := u(xj), xj ∈ ΓD, 1 +N1 ≤ j ≤ N2,
Λ3 := {λ1+N2

, . . . , λN3
}

λj(u) := ∂u
∂n (xj), xj ∈ ΓN , 1 +N2 ≤ j ≤ N3 =: N.

If the evaluation points within the three sets Λ1, Λ2, Λ3 of functionals are
different, all linear test functionals in Λ = Λ1∪Λ2∪Λ3 are linearly independent.

This specifies the test part of the problem for both the symmetric and un-
symmetric methods. In general, there may be several differential operators and
several boundary conditions in any kind of mixture, provided that everything
is linear in u and the test functionals are linearly independent. There is no
numerical integration, no test functions, and up to now there are no kernels.

Guideline 15.1 To give certain test functionals special importance, one should
apply constant factors.

For example, boundary test functionals in Poisson problems should get a factor
of about 1000 over the differential equation test functionals. Exact rules for
this are not known, but the background is provided by continuous dependence
inequalities like (48, eqcontdep) where the parts of the right-hand side should
carry different weights.

15.1 Symmetric Meshless Collocation

(SecSMC) The difference between symmetric and unsymmetric meshless collo-
cation shows up when looking at the trial side. For unsymmetric collocation,
a standard nonstationary scale of kernel-based trial spaces is used, where the
translates K(·, yk) are taken with trial nodes yk that are independent of the
test functionals in Λ. This method goes back to Kansa [?] and will be analyzed
later.

In the symmetric case, there must be a strong connection between trial func-
tions and test functionals. This is done by taking the trial functions λxjK(·, x), 1 ≤
j ≤ N for a sufficiently smooth kernelK guaranteeing that all test functionals lie
in the dual of its native space. This is a special case of general Hermite-Birkhoff
interpolation as described in Section 3 (SecOR). Under mild additional assump-
tions, this leads to a symmetric nonsingular linear system (18, eqHBlinsys) and
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error bounds along the lines of Theorem ?? (TheHBbounds). A detailed theoreti-
cal analysis of symmetric collocation can be found in the literature [100, 47, 46],
while reports on applications are somewhat scattered [?] and limited to small
problems with regular solutions. For such cases, the method gives quick and use-
ful results, provided that the general guidelines on scaling in Section 3 (SecOR)
are observed. Future work should apply special techniques of Section 8 (SecHLS)
for handling large-scale and ill-conditioned systems.

15.2 Unsymmetric Meshless Collocation

(SecUMC) is much more popular than the symmetric case, because it is easier to
handle. The matrix entries λxi λ

y
jK(x, y) of the symmetric case apply all deriva-

tives twice, while the unsymmetric case with trial functions K(·, yk) involves
only λxiK(x, yk) which is simpler to program. There are very many papers on
practical applications of this technique [?], but a thorough theoretical analysis
was missing for about 20 years [80]. We summarize the relevant issues in

Guideline 15.2 (guiunsymmcoll) The mathematical foundation of unsymmet-
ric collocation requires four ingredients:

1. a linear and well-posed PDE problem

2. a nonstationary scale of meshless trial spaces with good approximation
properties and spanned by sufficiently smooth kernel translates K(·, yk)

3. a scale of test discretizations via sets Λ of collocation functionals which
is fine enough to guarantee at least a full rank of the unsymmetric linear
systems with entries λxiK(x, yk)

4. an approximate solution of this linear system with small discrete residuals.

Items 1-3 above are sufficient to guarantee approximate solvability in the final
step. It can be implemented by various techniques including linear or least-
squares optimization or greedy adaptive methods [?] described below. Of course,
guidelines of Section 7 (SecAK) concerning scaling must be observed at all times.
If the sup norm of residuals is minimized, the method reduces to linear opti-
mization, and it can be implemented via the revised simplex method. By Kuhn-
Tucker theory, the final result will then be based only on a small finite set of
test functionals. This is a connection to support vector machines.

15.3 Adaptive Collocation Solvers

(SecACSC) In finite elements, there is a vast recent literature on adaptivity
controlled by efficient error estimation techniques. Meshless kernel-based collo-
cation methods can implement this in a very simple way by inspecting residuals
of the differential equation and the boundary conditions. Since evaluations of
trial functions are explicitly possible and very cheap, one can always evaluate
the residuals on a large set of background test points, using only a few of these
to define the test functionals entering the calculations. The general recipe is
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1. Start with ũ being the zero trial function and set N := 0.

2. Iteration:
Assume that there is a trial function ũ which is a linear combination of
N trial functions u1, . . . , uN such that the N × N system withe entries
λj(uk) for N test functionals λ1, . . . , λN is non-singular and has ũ as an
approximate solution.

(a) Find a point in the domain or on the boundary where there is a large
or maximal residual. Stop if none can be found.

(b) Use this point to define a new test functional λN+1 for further cal-
culations.

(c) (itemtrialselect) Add a new trial function uN+1 such that the
enlarged system still is nonsingular.

(d) Solve the new system approximatively for a new trial function ũ.

If candidates for test functionals and trial functions are chosen from a large
reservoir satisfying the background theory for unsymmetric calculations as de-
scribed in Guideline 15.2 (guiunsymmcoll), this is an adaptive bootstrapping
technique that automatically selects useful subsets of trial functions and test
functionals without ever forming a huge matrix defined by all possible trial
functions and test functionals. Connections to the notions of dictionaries [?] in
Approximation Theory and to greedy algorithms [?] are apparent.

This technique works fine for small problems [?] but needs further theoreti-
cal and numerical research if N gets large and the systems get ill-conditioned.
In particular, step 2c (itemtrialselect) of the algorithm can be implemented
in various ways, and it is not clear how to assess the performance for small
N . The symmetric case can also be handled adaptively by omitting step 2c
(itemtrialselect), taking the new test point and the corresponding func-
tional to define a new trial function. There is a theoretical background for this
symmetric greedy strategy [?].

?????????????????

16 Special Kernel Techniques for Time-dependent

Problems?

(SecSKTfTdP)
??????????????????
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